. ™ Micro-Professor
MPF-1 Student Work Book

MULTITEGH INDUSTRIAL @ORPORATION

Copyright © 1982 by Multitech Electronics inc.

and Multitech Industrial Corp.

No part of this publication may be reproduced,
stored in a retrieval system,

or transmitted,

in any form or by any means,

electronic, mechanical, photocopying,

recording, or otherwise,

without the prior written permission of the publisher

MULTITECH INQUSTRIAL CORPURATION

OFFICE/ 977 MIN SHEN E. ROAD, TAIPE!, 105,
TAIWAN. R.O.C.
TEL:{02)769-1225(10 LINES)
TLX:23756 MULTIC. 19162 MULTIC.
FACTORY/S, TECHNOLOGY ROAD Iil,
HSINCHU SCIENCE-BASED INDUSTRIAL PARK
HSINCHU. TAIWAN, 300, RO.C.
TEL{035)775102(3 LINES)

Multitech Electronics Inc.

195 West El Camino Real
Sunnyvale, CA. 94086
U.S.A,

Tel: 408-7738400

Tix: 176004 MAC SUVL
Fax: 408-7498032

- Micro-Professor
- MPF-I Student Work Book

CHAPTER 1.

1+1 Unpacking and Installation. .4

1.2 Programming Languages .- o §

1+3 Testing & Familiarization-- - - oo i 05

1.4 Program in Engllsh PPN

1.5 Program Explained - 6

1.6 Assembly Listing-- - -7

1«7 Checking for Data Entry Errors .8
1+8 Program Execution - G e e e O
1.9 Checking the Results 9
CHAPTER 2.

2.1 Reset or Monitor: What's the Difference?13
2:2 Is the MPF-l a New Recordmg Artist?... ... 15
2+3 More Keys - 17
CHAPTER 3.

3.1 ASSEMBLY--the Sane Way to Go-- 21
3.2 Easier to Read - = 22
3.3 Easier to Program 23
3.4 Easier to Correct - 23
3¢5 How to Proceed Usmg the MPF-I-- 24
CHAPTER 4.

4.1 Central Processmg Unit (CPU) et et e e e 1029
4.2 PIN-OUT-. - e 30
4.3 Memory - 31
4.4 RAM-- .. 32
4.5 Dynamlc RAM Static RAM - 33
4 .7 Monitor Program and ROM of the MPFI 34

8 AAAreSS oo e e 0 35,
e 9 Byte, Bit oo e s 36

L T o2 e < RSO I
413 Peripherals - oo 38
4 .14 Parallel I/0 Lines - - S 1
4.15 Advanced Hardware Descrlptlon (Optlonal) a4l
4.16 Power supp|y . . L R R PP

CHAPTER 5

Flashing a Message - ooor e s v 51
EPROM Testmg R P P 7]
RAIVE o oon oo e o e e ron eme ees ses ere e e e s en s s s et e e e e e 81

nnn
.
WN =

CHAPTER 6

6.1 Exercises and Experiments - 67
6.2 Questions of Exercises ..o 123
63

Answers to EXEICIS@S -+ «rorirer e vre im0 133

CHAPTER 7

7.1 Major Divisions of the Monitor - oo 168
Answers to EXE@IrCISES - - vre oo e it e e 185

CHAPTER 8

Sheet 1 of 4- : R A -1
Sheet 2--The Control Function of the 8255~ 203
Sheet 3--Counter Timer Circuit (CTC) and

Parallel I/0 (PIO) ceee e 204

APPENDIX
Appendix A References - e 2015
Appendix B Alphabetical Llstlng of Monitor and
Interrupt Key e 9pg

Appendix C .

CHAPTER 1

.

This workbook is designed for the first time user of
microprocessors and microcomputers but intends to explore
the world of microcomputers. The workbook guides you step
by step' in your learning about microcomputers. We know that
" you will learn a great deal and also enjoy becoming familiar
with microprocessors.

The fastest and most pleasant way to learn is to 1learn
by doing. You are encouraged to use a MPF-I microcomputer
to do the interesting experiments so that you can learn more
qguickly.

This workbook will first teach you to press a few keys
on the MPF-I to see how it responds. And then, the workbook
will teach you to press more keys and let the MPF-I show you
the interesting results, As you progress in this workbook
you learn new modes of operation. What is more important,
you will eventually learn a great deal about microcomputers
and microprocessors. To put it simply, you will know how to
use computers to solve problems.

Never let a computer scare you!l When automobile was
first introduced to the world, few people were familiar with
it. Even today, you don't have to know everything about an

automobile to drive it, For example, you don't have to know
too much about the complicated automobile transmission
system to drive a car. But of course, you have to know some
basic principles so that you can shift the gears properly.
Operating a computer can be reduced to basic principles.
Once these principles are learned, you can determine whether
you want to continue and become a customer engineer (auto
mechanic), an operator (a professional driver), or a
designer {(an automative engineer.)

To learn how to drive a car, you must become familiar
with the features or functions of some devices or equipment
such as the engine, steering wheel, etc. (In the realm of
computer, these dovices or eguipment are generally referred
to as "hardware".) You must at least know the names of sone
computer hardware devices and equipment and their basie
fanctions. Once you have learnel to drive a car, your every
move comes naturally and easily. The same 1is true about
(operating) a congater.

The manuals that accompany your Microprofessor are
designed for reference and to suggest experiments by showing
examples. To get started, it is suggested that- you follow
the procedures given below.

Exercises and Experiments.

As you proceed through this workbook, you will see
the notation Exercise 6~1, Exercise 6-2,..., in the
left margin. This is a signal to proceed to the sec-—
tion named EXERCISE and find the same number &-1, 6-
2,+.++. You should answer any questions in the exercise
and then proceed to the ANSWER section to check vyour
work. You will also be asked to perform experiments
(answer questions) in the Experiment Manual (Hard-
ware/Software). The answers to these questions are
usually found in the section named EXPERIMENTS. Occa-
sionally, an answer to an experiment will be part of an
answer to an exercise.

1.1 Unpacking and Installation

Open the "book" containing the Microprofessor (MPF-I).
Locate the power connector in the upper right-hand corner.
(Fig. 1-1)

. Power

Find the AC adaptor. The adaptor (Fig. 1-2) is a black
box labeled "AC ADAPTOR MULTITECH". You should make certain
that the wvoltage input shown on the adaptor matches the
voltage supplied by your cutlet., In the United States it is
assumed (unless a special order is made) that the supply is
117 VAC - which is usually referred to as one-ten (110 V).
You should also check the frequency; the label on the
adaptor will show the frequency in hertz (Hz).

Plug the 9V circular shaft into the power receptacle
on the MPF-I. The side opposite the AC adaptor label is to
be plugged into your AC power outlet.

dkhkhkhkhhhhhkhkhkhhkhkhhhhkhhhhhkhhkhixhhhhhhhkhkhhhhkkkkhhdhk

* CAUTION : DO NOT TOUCH THE PRONGS WHILE PLUGGING *
* THE AC ADAPTOR INTCO YOUR OUTLET! *
Akhkkkkhkhkkkhhkhkk kR kR kkkkkkhkhkkhhhdkkkbhhrxxkhdddhx

1.2 Programming Languages

What 1s a program? How can a program be run
(executed)? To answer these questions, you should know how
a computer communicates with the people who wuse it. A
computer sometimes can be reqgarded as a 1loyal servant who
always follows the instructions given by the master. Once
the master has some good tasks for a computer to do or
requires a computer system to sSolve some problems, the
master gives step-by-step instructions to the computer.
Each and every step that is reguired to solve a problem or
to perform a task are given clearly to the computer. These
instructions constitute a program. Any person who writes a
computer program is called a programmer, In order to
program, you have to learn computer programming languages
such as ASSEMBLY, BASIC, PASCAL, APL, FORTRAN, and FORTH.
We will discuss ASSEMBLY language in later chapters.

Now you know that a programmer can give instructions to
a computer. How does a computer talk to a person? In the
case of the MPF-I, a six digit LED (light emitting diode)
display and a built-in speaker are used to tell a programmer
what the MPF-I 1is doing. The MPF-I display can show
modified Roman letters and Arabic numerals from 6 to 9 plus
some special signs.

1.3 Testing & Familiarization

In the exercise below, you will be shown how to enter
and execute a short program. Performing this exercise will
test some of the MPF-I functions and familiarize you with
the MPF-1's Z8@ microprocessor. The program used in this
chapter adds two numbers, and stores the result in memory.

1+4 Program in English

Load the first number (5) into the A register, and the
second number (4) intoc the B register. Add the content of
the B register (4) to the content of the A register (5), and
put the result (9) in the A register. Then, store the value
of the A register in memory location 1838H (H stands for
hexadecimal) and finally halt the Microprofessor.

If you are already familiar with registers and ASSEMBLY
language programming, you may want to skip the next section,
although it is highly recommended for anyone.

1.5 Program Explained

In the program, you will instruct the MPF-I to access

the A register and load it with a value : (5). Now you may
ask : "What is a register?™ A register is an area in the CPU
that stores different kinds of information. It can be

regarded as a memory and a work area. Generally, the
registers of 2Z8@ CPU are divided intn two categories--
general purpose registers and special purpose registers.
The general purpose registers are named A, B, C, D, E, F, H,

and L. The special purpose registers include PC, 5P, IX,
1Y, I and R. In the case of our program, 5 is placed in the
A (accumulator) register. Because the A register must con-

tain one of the values in any B-bit arithmetic operations.
It is, therefore, often called the Accumulator. When 5 has
been loaded into A, 4 will then be loaded into B register.
The wvalues in the A and B registers will be ‘added together
and placed into the A register. The value in the A register
will be stored at memory location 1830H, then the MPF-I will
be halted.

1.6 Assembly Listing

All of the program is entered into the MPF-I in hexa-
decimal (hereafter, we will use the common abbreviation hex
for hexadecimal,) Therefore, you first write your program
in Assembly language and then translate it into hexadecimal.
Most of the demonstration programs written in MPF-I manuals
will also be listed in machine language code which is in
hexadecimal. A complete Assembly program listing is shown
below.

1800 3E0S LD A, 5
1802 8664 LD B, 4
1884 80 ADD A, B
1885 323918 LD 1838, A
1808 76 HALT

You will now enter the object (machine} 1language code
shown in the Assembly, program listing. If you haven't
already done so, connect your MPF-I to the power source.
Now press the system reset key @(the key is used for
initializing the MPF-I). Since the, memory locations at
which you <can store programs begin at hexadecimal location
1800H, entry of object code will start at 18@@H. Press the
address key [BDDR| . A random address will be displayed on the
four leftmost digits; these digits will be referred to as
the address field.

Enter the starting address for the machine language
code by pressing[I], ’ ’ . The same result can be
obtained by pressing the program counter [PC] key (this only
works when your program starts at 180PH). Now inform the
Micro-Professor that data is to be entered by pressing [DATAL
Refer to line 2 of the assembly program listing. Line 2
contains two bytes of object code 3E and 85.

Key in the first byte by pressing [3]and then [E]. The
display should now show:
[}
HEENEE

Advance the address field display by pressing . The

display will show:
HEXHER

Enter the second byte of hexadecimal data
and then 5 . The display should be:

by pressing @

Liqe 3 of the listing also contains two bytes of
hexadecimal data; enter these bytes by keying:

'I@Il’@l

In a similar manner, enter the rest of the program, namely:

HEEUEELEEERLDE D E

1.7 Checking for Data Entry Errors

The program has been entered. It is wise to check for
entry errors. Press 1.8, .[2]. Are the right-
most two digits in the data field equal to 3E? If not,
pressand enter B . To examine the next byte press
. Is there a 85 in the data field? If the display is
correct continue inspection of all the remaining data using
the E]key. If the present byte or any successive Dbytes are
incorrect, enter the correct data.

1+8 Program Execution

There are two ways to begin execution at address 18p8H.
The simplest is to press [RS, and then [GO. (The [PC] and [GO
keys are used in program execution, stands for program
counter. This key is used to tell the MPF-I where a program

begins. The key is a signal (that says: "You may go
execute the program".) The second method allows execution

to begin at any address, Press , , the beginning
execution address e.g. 1 , 8 , 8 , & , then press ._ When
you press {in the above program), the screen will go
blank and stay blank. The program has reached thg HALT
instruction and is waiting for the next operator action.

1.9 Checking the Results

To regain control of the keyboard functions, press
MONTI, The answer to 5+4 was stored at location 183@H. Key
in [ADDR] , , KR . The display should show:

Now 1let's check what was stored in the reg@sters.
Press the key. The word REG should show on the display.

Press BE; this will display the contents of the AF register
pair. The first two digits contain the contents of A
register, and the middle 2 digits display the contents of F
register. Do not worry about the F register now. We are
only concerned with the value in A register. Didn't we
store a five in A register? And then, didn't we add the
contents of B register (4) to the contents of A register?
If A register contains a nine, then it is correct. Press
[RE@ then the key. In this case we are looking at the
contents of the BC register pair. Are the numbers in the
leftmost 2 digits @47 If they are, then Congratulations!
You have Jjust successfully entered your first object code
program ontoc the MPF-I. If something went wrong, you may
find the answer to your problem in the next section.

When you made the following errors:

1) A byte was incorrectly entered. Write the correct
byte over the incorrect byte.

2) One or more bytes were left out. Read section
3.3.3 (in the User's Manual), then remove the bytes one by
ane.

3) One or more bytes need to be added. Read section
3.3.2 (in the User's Manual), then add each byte.

CHAPTER 2

Keyboard Familiarization

i

Are you Keybored? 0.K. Now you know how to enter a

program and, so far, your experience with running a program
has heen successful. But if you're like us, you may be
KEYBORED! i)
Some symptoms of this disease are confusion with each key
functions, and adversion to abbreviations such as [ADDR|, [REG),
SBR and [INS], and finally, allergic reactions to white, grey
and orange rectangles. The good news is that this disease
is painlessly curable, our RX: read this chapter and find
out how to avoid entering the same program over and over.

2.1 Reset or Monitor: What's the Difference?

In chapter 1, you entered a program, and you were told
there were two ways to stop the execution of .a program.
One was to press the key, in which case the display
shows a memory address, or you could press the [RS]key, in
which case the display will show[muPF=I. If you were sharp,
you might have noticed that we didn't press the [RS] key to
stop the program when we were planning to look at the
contents of the registers. This is because of the [RS]key]
is used: (1) to perform a hardware reset of the CPU, (2) to
initialize the monitor program, and (3) to transfer control
to the monitor.

If we were to initialize the monitor program before we
went to check the values in a register, those values might
not remain the same. Unlike the key, the key
transfers control immediately to the monitor. The address at
which the program was currently at when the key was
pressed is displayed along with the data at that location.
Enter &the following program, and we’ll do a short experiment

with the [MONI| and [RS]keys.

1;police car siren:

180Q 2 ORG 1836H
1808 O0EQ@ 3 LOOP LD c,o0
1892 21C000 4 LD HL,@COH
1805 CDE485 5 CALL TONE
1808 QEC® 6 LD C,0COH
18@a 210001 7 LD HL, 100H
18D CDE4PS 8 CALL TONE
1818 18EE 9 JR LOOP

1@ H

11 TONE EQU g5E4

12 END

If you had any problems entering the above program, you
need to review chapter 1.

Now for the experiment, after you have 1loaded the

program, press[PC, then [GO]. If everything was entered
correctly, vyou should hear a sound similar to a European
police car siren. Now, to stop the execution, press

. What happens? uPF-I appears on the display.
Begin the program again and this time, stop it with [MONI).
What happens this time? Instead of going back to ground zerc
and initalizing the system, [MONI| simply halted the program

13

where it was and allowed you to examine the registers. When
the program 1is halted the left 4 display digits show the
program counter (where the program was halted) and the 2
right display digits show the opcode at the halted address.
Press [GOl and several times and notice that the
contents of the PC counter address will vary.

14

2.2 Is the MPF-l a new recording artist?

Well, not exactly. But the MPF-I does make tapes.
Examine the top, righthand corner of your MPF-I. Next to
the power socket, you will find two circular metal jacks.
Wwhen a cassette recorder cable is connected to these sockets
and to a recorder, a simple storage of data can be
performed. Assuming you have the reguired cable and
recorder, let's make a tape of the police siren program you
have use just entered. You may wish to check to see if the
siren program is still in the MPF-I memory. If not, reenter
the program. Connect the cables from the cassette recorder
to your MPF-I. Make sure to connect the cable from the EAR
jack to the MPF~I's EAR socket. Do the same with the MIC
cable and socket, Now, press on the [TAPE WH key. The
screen will show a random number in the address field. The
display should be similar to this :

XeXeXaX. —=F

The -F in the data field is the mnemonic for (stands for)

filename. The filename 1is wused to distinguish different
data sets stored on a single cassette. It is also used to
read back data. You <can wuse any combination of the 16

lettered and numbered keys in the filename. For your first
try, let's use something easy to remember, e.g. 8881. Enter
©9,8,9,1. Now enter [+]to move on to the next display. You
will again see a random number in the address field and the
display should look like this:

XKaXoXo¥Xo =-S5

The -S in the data field stands for the starting address of
the data you wish to put on the tape. Our preogram begins at
180@. Enter 1,8,8,0. Now press to get to the next field
again. You should see a random number, then the mnemonic on
the display should read -E. This signifies that the last
memory address to be written to the tape should be entered.
The 1last address in our program was 1811 so enter’ﬂ, E,!,!.
Now we are ready to make a tape. Rewind the casette in your
recorder to the beginning of the tape. Press PLAY and
RECORD on the recorder, then press on the MPF-I. If
everything 1s going correctly, you should be able to hear
the noise of data being output. What sounds noisy to you is
actually vyour program! If the cassette recorder is not
ready and you press [GO] , do not worry, the MPF-I will
still send out data and then return control to the user.
You can then begin the process over again.

15

Now let's read the data we wrote to tape back into the
MPF-I. press [TAPE RD. We now have that familiar mnemonic
(-5) on the screen again. Input #6001, or whatever filename
you used in the above exercise. Rewind the cassette and
press [GO| on the MPF-I. Press on the recorder. The
screen will go blank, periods will be displayed for a few
moments, now the filename of the program at that location
will be displayed. In this case 8001, the program will now
be read in. When the "nolise" stops, stop the recorder and
reset the MPF-I. Now press and . Is the program the
same? If so, congratulations! If not repeat the above
process with a different volume setting.

16

2:3 More Keys

The MPF-I allows users a great deal of flexibility and
power through keyboard entries. How does a user become
familiar with the keyboard functions? &n appendix with an
alphabetic 1listing of the keys 1is at the back of this
manual. But, do you really need to read about each key? I
recommend vyou proceed through the manual and learn how to
use the keys in the context of programming. Use the appendix
for reference.

Keyboard Familiarization Questions

1. Which keys do not cause a tone to sound when pressed?

2. Why 1is the RESET key the only key that 1is brightly
colored?

3. Look at the MPF-I User's Manual, Table of Contents-3,
Operation introduction. Two of the gray keys are not
listed ~- which ones?

4. Can you press any key that would cause damage to the
MPF~17?

5. There is a magic key that will tell the Micro-Professor I
to do exactly what you want done. What is this key?

Keyboard Familiarization Answers

1. RESET, MONI, INTR, USER KEY.

2. This key 1is the MPF-I PANIC button. The color should
also serve as a warning that the current contents of the
registers will be lost, when RESET is pressed.

3. [INTR| and [USER|KEY. Additional programming must be done
to make these keys perform a function.

4. No, not unless vyou hit the key with a hammer. Pressing
the wrong key can change your program.

5. GO. If a program has been entered and it is correct.

17

CHAPTER 3

Keeping Your Sanity—
(or How not to Write in Object Code)

.

3+1 ASSEMBLY--the Sane Way to Go

In earlier chapters there have been hints that you
should first write your program in Assembly Language., The
major reasons for Assembly programming are:

.Easler to read
.Easier to write programs
.Easier to correct errors

21

3+2 Easier to Read
What does the 3 instruction program below do?

2311 1416 @000 09900 0901 1@19
1100 @110 0APQ 1200
AG11 6010 §0AQ 0Q1@ 2001 1910

After looking at the binary code you probably don't
care. OK! Here is the same prodgram in hexadecimal.

3A 90 1A
C6 08
32 62 1A

How can the hexadecimal program be decoded? Open the
MPF-I User's Manual to Appendix C. Find the section Z88-CPU
INSTRUCTIONS SORTED BY OP-CODE. Search for the opcode
3A (Second column almost halfway down). The row reads

3A 8485 LD A, (NN)

OH! LD stands for load. i
A load means making a copy of the data, usually one or two
bytes, then entering the data into a stated destination.

In this instruction, a byte is loaded from memory into A
register. The form LD A,(NN) is still a little hard to
read. The Assembly language instruction is r

LD A, (LA®GBH)

which means

(1) find memory location 1A@8 (hexadecimal),

(2) make a copy of the byte at location 1AD00,

(3) then replace contents of the A register with the copy
from memory.

The entire projram is
LD A, (1AGAH) ; A <— (lAQBH)
ADD A,8 ; A {— A + 8
LD (1Ad2H),A ; (1A@2H) <— A

This program

1) loads a value from memory into A,

2) adds B8 to the contents of A,

3) puts the result (A register) in memory locatioan 1AW2IL. -
Read the binary cotde again and compare with the Assembly
language program.

22

3.3 Easier to Program

In your program a test is to be made. If the value in
the A register is zero, then a routine which clears the
account book is to be executed, If the wvalue of A is
negative, then an overdraw routine is executed. Using
Assembly language you can write:

Je Z,CLRACC ;If A=@ jump to clear account
Jp M, OVERDR ;If A is minus (negative) jump
to overdrawn.

In object code programming (hexadecimal or binary) you
may not know where the routines CLRACC and OVERDR will be
in memory. This means you will have to leave a blank area
in the code. Too many blank areas lead to the inability
of locating the exact address where the jump was to be
made to. In assembly language programming you just write
the name of the routine e.g, CLRACE.

3.4 Easier to Correct

Sooner or later it will become necessary to alter
codes--insert, delete, or add instructions. In Assembly
language programming, you can usually find the code to be
modified swiftly. To add a new line,simply write the in-
struction in mnemonic form.

23

"3+5 How to Proceed Using the MPF-1

1. Decide what the program must do. Base your decisions
upon the required input and output.

2. Decide if you can write the program. VYou might be
asked to compute an advanced mathematical function of
which you have no knowledge.

3. Decide whether the MPF-I <can program the task.
Unless a special interface is designed; electro-—
cardiograms can't be read directly.

4, Organize the program flow. Sometimes a flowchart
helps.

5. Write the program in Assembly Language.

6. Hand translate the program into object (hexadecimal)
code,

7. Enter the hexadecimal code into the MPF-I's memory.

8. Test the program.

9. Make corrections in Assembly language and translate
into object code.

13. Save the working program on tape.

QUESTIONS

1. Turn to Appendix C in the MPF-I USER's MANUAL. Find the
section Z8@-CPU INSTRUCTIONS SORTED BY MNEMONIC. The
table should begin with:

0BJ SOURCE
CODE STATEMENT
8E ADC A, (HL)

Use the table in the manual to fill 1in the missing
entries in the table below.

0BJ SOURCE
CODE STATEMENT
ADD A, (HL)
) CC;‘)
) NEE -
b (om.a
S xor N
o BIT 3,
T srA A

24

2. In this section you will be asked to translate frem
object c¢ode (writtem in hexadecimal) to source code
(written in assembly language). This is uswally done
when you can't read the source statement or are given
some code in hexadecimal (this is a rotten situation).

Turn to Appendix € in the MPF-I User's Manual. Find
the section Z86-CPU INSTRUCTIONS SORTED BY OP-CODE.
The table should begin

OBJ SOURCE
CODE STATEMENT
ae NOP

Use the table 1in Appendix C to fill in the entries in the
table below:

T oBJ SOURCE '
| CODE STATEMENT
70 WHL) B
FF ReT 2y
_ 98 __ | wNoe?
50 LD D, R
A6 AWND (pL)
lcB le | |
DD CBOSCE|
ED RO -
_FD 23 J

Un;il you looked for CB, all you had to do is to find the
object code 1is to go down a list in hexadecimal order - 8,
1!2,3,4,5,6,7,8,9,A,B,C,D,E,F. All instructions starting
with CB,DD,ED, and FD are in separate lists. The reason for
Fhe separate lists is that the Z88 executes these
instructions differently. 1In a later chapter, some of these
instructions will be explained.

25

ANSWERS

1. [0BJ SOURCE

CODE STATEMENT

8E ADC__A,HL

3F CCF

ED 44 NEG

12 LD (DE),A
EE 28 XOR__ N

CB_5C BIT 3,H

CB 2F SRA A

2. [OBJ SOURCE

CODE STATEMENT

70 LD (ML), B
FF RST 38H

80 NOP

5@ LD D,B

A6 AND (HL)

CB 10 RL B

DD CBOGCE|SET 1, (IX4D)
ED BO LDIR

FD 23 INC IY

26

C
H
A
PTE
R
4

T

This chapter will introduce to you some of the basic
components (by basic, we mean they are indespensable.) and
their functions.

Computers have been called "electronic brains" because
computers can perform such operations as logic comparisons,

arithmetic calculations, and more recently reasoning. But
computers are much more than an electronic brain. Computer
have become more like an individual human being. This will

be discussed later.
4+1 Central Processing Unit (CPU)

The "brain" of a computer or a microcomputer is its
central processing unit (CPU}). You may wish to know
what a CPU looks like. The MPF-I has a 280 microprocessor
which is used as a CPU.

You can locate the Z8¢ CPU of MPF-I in a diagram on
page 4 in the MPF-I User's Manual. At the upper left corner
of the diagram, there is an rectangular area marked with Z8@
CPU. Here is where the CPU is located.

You may have noticed that there is a notch on the
upper edge of the Z8@ CPU. The notch is used to indicate
whether the Z80 CPU is inserted correctly into the socket.
If the notch points upwards, the 288 is correctly inserted.
Otherwise, the 288 CPU is not adaquately inserted and the
MPF~TI would run into trouble. Typically, reverse in-
sertion causes the 280 to overheat until it burns up.

Why does the 28 CPU have to be mounted correctly?
To answer the question, 1let's take a look at the CPU. The
CPU 1is an n integrated «circuit (IC) chip which is a ’tiny
piece of silicon on which many microscopic circuits are
built. The chip is packaged in two pieces of a Dual-In-Line
package (DIPs) that keeps moisture, dust, and Iimpurities
away from the chip. But since the chip is sealed in the DIP
package, the «c¢ircuits inside the package need to be
connected to outside circuits through pins as shown in the
diagram on page C-~1 in the Appendix C of the MPF-I \User's
Manual.

29

4.2 PIN-OUT

To make sure that a circuit inside the package is
connected to a circuit outside of the package collectly. @
specific pin is assigned to make a cor;ect connection. As a
result, each pin is given a specific pin number.

The diagram on page C-1 shows how pin numbers are
assigned to pins. If an IC chip 1is inserted in reverse
(that means the notch of the chip peints downwards.), it
results in incorrect connections of circuits, The pins are
not numbered sequentially (1,2,3,4,...) but rather by func-
tion. For example the transfer of data in and out of the 288
CPU 1is accomplished thru 8 data pins (14, 15, 12, 8, 7, 9,
16, 13). These 8 pins are grouped together and called the
data bus.

There are several reasons for selecting Z88 as the CPU
for the MPF-I. First, 288 1is one of the most popular

microprocessors. It is used as the CPU of many
microcomputers., Many software programs have been written to
run on 288 based computers. You can share or exchange
software programs with others, Secondly, the 289
instruction set was designed as an extention of the
instruction set for the Intel 8@8P microprocessor.
Therefore, almost any program written for an 8089

microprocessor can be executed on a Z8@ microprocessor
without any changes. The 8888 microprocessor 1is a very
important microprocessor <chip, for which many software
programs already exist. Thirdly, the 2286 microprocessor
(Z8@ CPU) features two sets of general-purpose registers and
additional special purpose registers which make it easier
for computer users or programmers to write programs for Z86¢
based microcomputers.

30

4.3 Memory

Before we proceed to show how a CPU interacts with
other devices, let's take a look at one of the major parts
that constitutes a computer--memory. A human being must have
a memory So that he or she can learn and think. A computer
must have a memory in order to process information and solve
problems.

Memory 1is generally defined as any device that can
store data in such a manner that the information can be
accessed (or reached) and retrieved {(or fetched). In today's
. computers, the memories wusually come in the form of IC
chips. The appearance of these chips look similar to that
of a CPU such as the 288 microprocessor. They have DIP
packages and pins. Each chip is assigned a specific number.
This number indicates the functions the chip can perform.

31

4.4 RAM

Now open the cover of your MPF-I, there is a 24-pin 1IC
chip on the upper right part of your MPF-I. On page I-4 of
your manual the chip is labeled RAM. The chip which is
marked with either 2816, 658725, or 6116P-4, is a 16K static
random access memory (RAM). 0On the part of the printed
circuit board just above the IC memory chip, the words "U8"
is marked to identify the location where the chip should be
installed.

When you try to decipher the words "RAM" and "static"
you may become frustrated. These words are just used to
distinguish different types of memory chips. The most
commonly used types of memory are RAMs, ROMs (read only
memory) , and EPROMs (erasable programmable read only
memory) .

The - RAM, more correctly speaking, should be referred to
as read/write memory. A more correct definition of RAM is
random read/write memory. The RAM is a semiconductor memory
into which information ({data) can be stored (written) and
retrieved (read out) again. RAMs differ from ROMs-- once
the power supply of a computer is turned off, the contents
of a RAM disappear. As a result, RAMs are suitable for
storing data which are to be used temporarily by a computer
such as programs and data.

32

4.+.5 Dynamic RAM, Static RAM

The RAM can be further divided into two types--static
RAM and dynamic RAM. The static RAM is what is generally
referred as those RAMs whose contents disappear, will on}y
change, when written into or as soon as the power supply 1s
turned off. The dynamic RAMs, even when power 1S
continuously supplied can leose data if the contents of such
RAMs do not go through a memory refresh process. Unlike
some (many) CPUs the 280 provides a refresh signal.

4-6 ROM

Data is read from a ROM. No data can be written into
ROM chips. Even when the power supply is cut off, the
contents of ROMs do not change. ROM chips are suitable for
storing data that is to be used repeatedly.

33

4«7 Monitor Program and ROM of the MPF-I

The location indicated by U6 is used to put a ROM for
storing monitor programs. Almost every microcomputer uses a
ROM or an EPROM memory chip for storing monitor programs,
which are used to control the internal operations of a
microcomputer. An EPROM is a close relative of the ROM. By
applying ultraviolet rays an EPROM can be erased.

Typical functions of a monitor program include the

initialization of the CPU, keyboard scanning, display
control, and responding to the function to be performed each
time a key on the keyboard is pressed. In short, once a

micgocomputer is turned on, the CPU of the microcomputer
begins to execute a monitor program. At location U6 in the
MPF-I, either 16K PROMs such as 2716 and 2516 or 32K PROMs

such as 2732 and 2532 can be used for storing monitor
programs.

We have talked about the CPU, memory, and data input
device (such as the MPF-I keyboard), and data output
device (the display and speaker). Most of today's
microcomputers have these four major components.

34

4.8 Address

Just by watching the keyboard, you may guess that a
programmer can key in a character like "A" or "7". But
where can a character like "A" be stored in the MPF-I. How
is it stored? A computer is designed so that it only
recognizes "@"s and "1"s no matter who the manufactuer is,
As a result, when youpressa key to store a word, the
computer first encodes the word into the series such as
71191921 and then stores the string of B8's and 1's into a
specific location. Since the computer memory stores vast
amounts of data, data should be stored or retrieved from
specific locations to avoid confusion in data manipulation.
Therefore, an "address" is given to identify the location of
a specific item of data the same way as a specific building
is assigned an address so that mail addressed to the
building can be delivered properly.

ADDRESS BUS

The Z8% microprocessor uses 16-digit binary numbers to
identify the locations of data stored in the memory devices
that are connected ko it. When the CPU of a computer
intends to access the data stored in its memory devices, it
communicates with its memory through a 16-line address bus.
Each 1line of the address bus corresponds to a binary digit

of the 16-digit address. And each line of the address bus
can convey two signals to the memory--"8" and "1". Using @
and 1, you can construct 65,536 16-digit numbers. That

means the Z8G CPU can access up to 65,536 memory locations.
The number 65,536 is often written 64K.

35

4+9 Byte, Bit

We have mentioned that data is stored in the form of
strings of @'s and 1's in a computer. In computer systems,
memory size is measured in bytes. In Z88 based
microcomputers such as MPF-I, a byte is equal to eight
binary digits, e.g. 1. A byte looks like 9@gpe@@8, 11111111,
11068121, or 81111061. A byte is made up of eight "bits".
In a binary numerical system, a bit is either a "@" or a
lllli.

You may wonder how an item of information or data is
accessed (for example from the keyboard). Turn to page I-B-3
(sheet 2 of 4). This schematic shows how the IC (8255)
controls the input and output of data of the MPF-I. If you
have not worked with hardware, do not expect to understand
the details of how the 8255 controls devices such as the
displays. Later in the workbook a detailed explanation will
be given of the schematics. This chip controls MPF-I's data
input and output devices such as LED displays, the keyboard,
the cassette interface, the interface to MPF-I's CPU, and
the address decoder. In the lower left part of the
schematic (A, 7 and 8), you will find a chip (74LS139) which
is connected to a pin of the 8225 chip marked ¢S (which
stands for chip select). The 74LS139 is an address decoder
used for deciding what range of memory addresses is being
accessed by the CPU. There is a "--" on top of the mark CS.
That means the address decoder works when the input of CS is
low. A low means the voltage is pretty close to zero - pro-—
bably 8.4 volts, We say the address decoder works is active
low, because when the input of CS is low it becomes active.

36

4 - 10 Clock

Chips (or large-scale integrated circuits, LSIs) in the
Zz8¢ family require a clock. The clock supplies a square
wave of a certain frequency used for controlling transfer of
data in the CPU,. Every time the clock ticks, data |is
tansferred. The illustration below shows how a sgquare wave

looks like.

TIC 5

1
I
| i

TIC 2 | TIC 3, TIC 4
Fig 4-1 The square wave

Chips using a clock have specific requirements for the
High and Low voltages. A good source for a clock is a
crystal oscillator. On a schematic, it looks like fig. 4-2.

o

Fig 4-2 crystal oscillator

On sheet 1 of 4 of the MPF-I schematic, you can locate
the crystal oscillator at (D-7) and (D-8).

The output of the crystal oscillator is connected to
pin 3 of the IC 74LS74 (coordinates D-6), and then to pin 6
of the Z88 CPU (D-5). The standard designation for a clock
is § . The label & is the point where clock signals go
into the CPU.

37

4+ 11 Reset

A requirement for a circuit to work properly is that it
always starts the same way each time it is put to work. The
Z80 CPU always starts (comes up) by addressing location @¢@6@
when power is supplied and a pin called RESET is held low
for a few cycles. Any time your MPF-I appears to be out of
control, you may activate a circuit that resets the CPU.
Pressing the R5 button controls the circuit that supplies a
reset signal to the Z80 CPU.

4 .12 Ports

Now we will take a closer look at the schematic for
MPF-I input and output (sheet 2 of 4). On the right side of
the B255, there are three "ports”, You may ask how ports
can be built on a tiny 46-pin chip.

The word port conventionally means a harbor, a sea port
where ships can sail in or out, loading or discharging large
amounts of goods. In our study of microprocessors, a port
can be regarded as a place where data from outside can be
"loaded" into the CPU and where a CPU can "discharge" the
data it has processed.

4 + 13 Peripherals

The <chip 8255 is a 4@-pin programmable peripheral
interface IC. Peripherals are generally referred to as
those devices which interact with the CPU for certain
purposes. If you use a cassette tape recorder to record
data or programs, then we say the cassette tape recorder is
a peripheral of the MPF-I. Peripherals can be a printer,
auxiliary memory storage equipment, or a display terminal,
etc.

38

4 . 14 Parailel YO Lines

Of the 8255's 4@ pins, there are 24 pins used as
parallel input/output 1lines {(we will wuse I/0 instead of
input/out hereafter.) The word parallel may puzzle you.

When data is transferred bit by bit, we generally call
this method a serial data transfer. Data is transferred
over telephone lines serially., If you want to input or
output eight bits of data or several batches of data all at
once, you have to use parallel 1I/0 lines. In computer
systems, data 1is usually transferred byte by byte 'between
the CPU and ROM or RAM chips. As a consequence, we have to
use parallel lines to connect the CPU and 1its memory
devices, If a byte--@1861881--is fetched by the CPU from
its memory, w«ach bit of this byte will be carried by a
single parallel line to the CPU. Therefore, a data bus
consisting of eight parallel bi-directional lines is used to
supply data between the CPU, memory, and I/0 ports.

The 24 parallel I/0 lines of the 8255 are divided into:
three ports—--Port A, Port B, and Port C--with each port
having eight parallel I/0 lines. Each of the three ports is
called an 8-bit port. Port A is an input port, because this
port is wused for «collecting data (which will then be
transferred) to the CPU. Port B and C are output ports,
because the two ports are used for activating displays and
keys.

You can locate Port A on the schematic sheet 2 of 4.
In the lower right part of the IC 8255, there are eight pins
marked with PAQ, PAl, PAZ,...PA7. They are connected to
eight parallel lines. Pin 37 (the pin marked PA7) 1is wused
for inputing data stored on cassette tape into the MPF-I.
Pin 38 (the pin marked with PA6) is connected to the User
key, which will become active when the signal on it is low.
PA@ through PAS are connected to six rows of the keyboard
matrix. The input signal becomes low only when keys in the
active column are pressed. Since the 8255 is programmable,
a programmer can program a port to be input or output.

In the MPF-I, Port-B 1is an output port used for
controlling the LED displays. As you can see on the
schematic, PBf through PB7 is wired to the displays with
eight parallel lines. Each pin or bit of Port B is used to
control one of the seven segments of the LED display and the
decimal point. Fig.A1-3 shows the name of each segment and
the corresponding bit in Port B.

Port &

J_ I (hhEhL

d p c b a f g
A= I
—
d P

Fig 4-3

39

Port € has many functions. Bit 7 of Port C (PC7) is
used for writing data into cassette tape. It 1is also
connected to the speaker and an tiny LED lamp. Once vyou
press a key on the keyboard of the MPF-I, the speaker of the
MPF-I will generate a sound and the LED lamp will blink.
Except for the keys marked with [RS], [MONI, [INTR, and [USER,
all the other keys cause the LED lamp to blink and the
speaker to generate a sound.

The PC6 is used for single step execution of a program
or when break points exist in a program. Bit # through bit
5 are connected to the LED displays and the keyboard matrix.
Bit @ selects the rightmost LED display and bit 5 selects
the leftmost LED display. All these bits are active high.

Thus PC@ through PC5 are used for selecting ULED
display. For example, when PC@ is high, the rightmost
display of the LED displays is active.

You may have noticed that the parallel lines of Port B
and C first go through three blocks marked with 75492. The
three blocks are actually three ICs wused as drivers that
amplify the incoming signals and convert them into strong
signals.

When you use a cassette tape recorder to read data to
the MPF-I CPU, the data goes into the CPU through PA7. When
the CPU of MPF-I writes data into a cassette tape, the data
goes to the cassette tape through PC7,.

40

4 . 15 Advanced Hardware Description (Optional)

4.15-1 PIO: Parallel I/0 Circuit

The Z80 parallel I/0 circuit (PIO) is one of a set
of chips manufactured to facilitate Z86 interfacing. The
PIO circuit is designed to provide a two-port, programmable,
TTL compatible parallel data transfer between the Z86 CPU
and peripheral devices. Turn to schematic sheet 3 of 4,
In the D and C of column 4, you can find Port A and Port
B. The two ports are independent 8-bit parallel bi-
directional peripheral interface ports using "handshake"
data transfer method.

The 288 PIO is an IC chip with 48 pins. Of the 40
pins, D@ through D7 is used as Z8@ CPU data bus. This is a
bidirectional, tristate bus which is used to transfer all
data and commands between the CPU and PIOD.

4.15.2 CTC: Counter-Timer Circuit

The 288 counter—timer circuit, like the 288 PIO circuit
is one of a group of IC chips manufactured to facilitate Z80
CPU interfacing. This chip performs timing and event
counting functions with four independent 8-bit <channels
which interface directly to the Z88 data bus.

The CTC chip 1is used when a program requires thac
certain operations be performed at fixed time intervals or
at pre-set frequencies. In general, the relationship
between the CTC and CPU can be regarded as that between a
person and his or her watch. The CTC is a Z:-2ir chip with
eight pins (D@ through D7) used as CPU data bus, zeven Ppins
used as CTC control, three pins as interrupt cc- -o0l, and
another seven pins as channel signals. The rema.uingy three
pins are pin 24 (to which a 5-volt power is supplied), pin 5
{ground), and pin 15 (which receives a one-phase 5-volt
clock pulse).

41

4 - 16 Power Supply

A power adaptor is supplied together with the MPF-I so
that youn <can convert the higher voltage typically supplied
by a wall ocutlet to 9V at /0UOmA.

The MPF-I requires a single 5V power supply at 50@mA.
A regulator is installed right beneath the socket for the
power adaptor to convert 9-volts to 5-volts. A heat sink
may or may not be attached to the voltage regulator to
dissipate the heat of the voltage regulator. Don't touch
the voltage regulator. It makes your finger uncomfortable.

42

Questions

to 1.3 al f rat
1. 13 ati thi P
nd 8
Physical Configuration
0 —— o
" 3 “ —J
HHT U*
- :l*
Y, YA

L
i

L

0o0E 2

——— T —

T Iy T IO I O
N N s D O O Y O
0y Y N N [y B
N O T O I O 6y O I B

444444

%

4-2. In Appendix B there are four pages of schematics.
Look in the lower right hand corner.

MULTITEGCH

TITLE:

MPF-I

SHEET 2 OF 4 | DATE | REVISION|
DRAWING NO." g 0822 A

Fig 4-5

Below the title MPF-I there is an entry indicating
which sheet vyou are reading. In the figure above
this is sheet 2 of 4. Find sheet 1 of 4. Notice that to
locate any component there are coordinates on the

boarders Fig 4-6.

i
g [6
Coordinate C-5
D
S |
|
C 1
I
[
G R —
|
B
A
T T T 1
8 7 6 5
Fig 4-6
Locate the component at C-5. What is this .
component? This part also has a U number what is

it?

=

4-3. The Z80-CPU transfers data in and out through its’
data pins There are eight data pins that are all accessed at
one time. The eight pins are grouped under the name data
bus. Turn to the diagram CPU PIN-OUTS Appendix C page <C-1.
Locate the DATA BUS. D@ is the least significant binary
digit and D7 is most significant binary digit. Fill in
chart below

BINARY DIGIT| D7\ D6|D5|D4|D3|02|D1|D@
PIN NUMBER

When you filled in the chart above, you probably observed
that the pin numbers for the data bus are not sequential,
The pin numbers jump all around. There 1is no requirement
that pin numbers for a bus be sequential.

4-4. Find the RAM in one of the sheets of the schematics
in Appendix B (it is labeled U8). What sheet 1is the RAM
on__ . What are the coordinates of the RAM? .
Around the edges of the chip are the pin numbers and their
functions. In the center you will see HM6116. A 6116 is a
type of RAM. Also on the chip is a memory address. The
unit as delivered has the 6116 RAM located at addresses
189@H to 1FFFH.

4—5: Again refer to the MPF-I schematics. Find ué the
monitor ROM. What sheet is it on? . What are the
coordinates?_ . Notice the type of allowable chips written
on U6-~ a 2516 or 2532. The 2516 option allows 2048 bytes or
characters (2K=16K of bits) of information to be retained

by the 2516. How many bytes would you think the 2532 chip
allows to be retained? .

4-6. The 280 CPU 1is able to address memory chips by
connecting the address bus to the Z86 CPU and to the memory
chip. The individual lines of the address are labeled Ag to
Al5, Find the address bus from the 89 CPU (Ul) to the

mon?tor ROM at U6. Enter the pin connections of Z88 CPU and
U6 in the chart below.

ADDRESS BUS L
3

PIN NAME AlS5 (Al4)Al3 |A12 (ALl A1@ |A9 |AB |A7 |A6 [AS A4 A2 1ALl AD

Z88 CPU (Ul)
PIN NAME

RAM (U6)
PIN NAME

45

Although it may be clear to you from reading the schematic
the address (and data) lines travel under U6. This means
that A@ of the Z80 CPU is connected to A@ of U7 and Ag of

U8. Enter the corresponding pin connections in the chart
below.

ADDRESS BUS
PIN NAME Al5 Al4| Al3 al2l All Ale| A9 A8 A7 AQ AS A4 A3 A2 Al| Al

Z8p CPFU (U1)
PIN NAME

RAM (UB)
PIN NAME

4~7. The data bus connects to several ICS just as the
address bus does. Find the data bus on sheet 1 of 4. Enter
the corresponding connections (pin numbers) in the chart
below

DATA BUS PIN NAME D7 D6 D5 [D4 | D3| D2 | D1 Dg

Z8BCPU (Ul) PIN NAME 14

ROM (U8) PIN NAME 9

The entire data bus is alsoc used to access information
from devices such as the keyboard. The 8255(Ul4) controls
the keyboard so the data bus must be connected to this chip.
This is so that the 8255 can send keyboard information to
the CPU. Look at sheet 2 of 4 coordicates C-8 and D-8. You
will see lines (wires) with the labels D& to D7. Where did
these lines come from? To the left of D@ through D7 is a

parenthesis labeled SHI1, 3. SH stands for sheet. The data
lines leave sheet 2 of 4 and connect to sheets 1 and 3. Can
you find the «connection on sheet 1? What are the

coordinates? What are coordinates for the data bus on sheet
3 of 47

46

Answers

4-1

4-2

4-3

4-4

4.5

4-7

280
Ccpu

At C-5 the 28@0-CPU.

The U number is 1.

[BINARY DIGIT|D7

D6

D5|/D4|D3

D2

Dl

D@

JPIN NUMBER

13

l@[9 7| 8

12

15

14

The RAM is on sheet 1 of 4.

The coordinates of the RAM are C-2.

The ROM is on sheet 1 of 4.

The coordinates of the ROM are C-4.

The ROM can store
{4K=32K bits).

(retain)

4896 bytes.

IADDRESS BUS
PIN NAME Al5 |Al14(A13|AL12|AL11|AL10| AS[A8| A7| A6 |AS| A4|A3| A2|AL|AD
288 CPU (U1) 5| a| 3| 2] 1| 4@l 39| 38| 37|36|35]|34|33]32|31|30
RAM (U6} NOT USED 181923 |1 |2 |3|4a|5]|s6(7]8
PIN NAME
laDDRESS BUS
PIN NAME Al0|A9| AB| A7| AG|AS A4 |A3|A2|AL|AD
780 CPU (Ul) 4P| 39| 38|37 36|35/34,33/32'31|3p
PIN NAME i i !

; | B
RAM {U8) 19/29123| 1| 2y 3| 4| 5| 6! 7| 8
PN NAME | | 1
DATA BUS_PIN NAME| D7 n6 [D5] D4a| D3 [D2] D1 DB
78PCPU_(UL) PIN NAME| 13 10| 9| 7] 812 15 14
ROM__(U6) PIN NAME| 17| 16| 15] 14| 13 |11} 16| 9
RAM (U8) PIN NAME 17] 16| 15] 14|13 [11| 18] 9

The coordinates

D-7.

of

the data bus on sheet 1 of 4 are D-1.
The coordinates of the data bus on sheet 3 of 4 are C-7

47

and

CHAPTER S

Introduction to Programming
the MPF-I

.

5«1 Learn by Doing

You will now be guided through a series of examples from the

MPF-I User's Manual, You should first key in the example
and execute the program. But if you want to learn
programming, you must do more. Each example will be
analyzed--some examples in great detail. Whenever a new

instruction occurs, you will be shown:

1) how to test if it is in the 280 instruction set.

2) the correspondence between assembly code and object code.

3) what registers, flags and memory locations are affected
by the instruction.

4) and finally the reason for using the instruction.

5. 2 Flashing a Message

Turn to EXAMPLE 2 in section 5.10. Key in and execute
this example. Does the program flash HELP US for 50880 ms
(1/2 second) and then go blank for 580 ms? Actually you
should see HELP US for a longer time than 5¢# ms and ' blank
screen for 1less than 580 ms. The program lights the screen
for 500 ms but the display takes a period of time to
extinguish (fade out) when they are no longer selected.

51

HeY
37 = H

L}

W

S« 3 Program Analysis

Exercise 5-1

Statement 1: flash 'HELP US'

You must understand you are writing your program in a
highly readable form. Some words in your program will not
be translated into an object program. An example is the
comment statment, like statement 1. When using an assembler
to translate your source program into object <¢ode, the
comment statement must start with a semicolon. The
semicolon signals the assembler to ignore the comment
statement. Why use a comment statement? Comments are used
to make the program understandable to readers and to
programmers., Such statements are called documentation. A
comment statement helps document a program.

c B €3

5 52

Statement 2: ORG 18@0H

The ORG statement informs the assembler where to place

the translated code., ORG stands for origin -- a beginning.
When the assembler sees an ORG statement, it sets a counter
which determines the location of each - translated
instruction. This location counter is advanced as each

instruction is converted intc object code.

Statement 3: LD HL,BLANK

This statement loads the address of BLANK into the re-
gister pair HL. To determine the address of BLANK, refer to
line 19. BLANK is a label and thus is in the column (field)
where labels are located. The address of LABEL, 1826, is
given by the lefthand column. . The location counter 1is re-
sponsible for calculating the values in this column. It has
now been determined that statement 3 loads the value 1826
into the HL register pair. The H can be assumed to stand
for high, thus the high byte, 18, is loaded into the H
register. L means low, so the low byte, 26, is loaded into
the L register. ’

When vyou are writing a program, you need to know what
the instruction set is. Can the register pair HL be loaded
with a value given in the instruction (BLANK)? This value
is called an immediate, because you can look at the object
code and immediately see the numbers being loaded into the
registers.

To determine the Iegality of LD HL,BLANK, you need to
know two facts: 1) is there an H and an L reagister which can
they be paired and 2) is the instruction allowable. To
determine the first fact, turn to Appendix C and find the
page titled Z-8@ CPU REGISTER CONFIGURATION. Yes, near the
top of the page under MAIN REGISTER SET you see H and L.
The 288 REGISTER CONFIGURATION 1is also shown in fig 5-1
(and fig 5-2). Now look in Appendix C for the page with
the title 16—-BIT LOAD GROUP 'LD' 'PUSH' and 'POP'.
Find SOURCE at the top of the chart then REGISTER
below SOURCE. Under REGISTER the fourth entry over from the
left contains HL, thus H and L may be paired. But are H and
L being used as a source in the instruction LD HL,BLANK?
No, the BLANK is being locaded into HL, therefore, HL 1is a
destination. Looking on the left side of the chart, find
DESTINATION then REGISTER., The fourth entry from the top
(under REGISTER) is HL. So HL can be used as a destination.
Can an immediate value be loaded into HL? Travel from left
to right in the row labeled HL until you come to the column
labled IMM.EXT (immediate extended). At the intersection
of the row and column, there is value (21). A box with a
value in it means that the instruction is allowed. Each "n"
in the box stands for one byte. The upper "n" is the value
to be loaded intc L, and the lower byte is the value to be
loaded into H.

53

MAIN REG SET

ACCUMULATOR FLAGS
A F
e c
D E
H L
A A
I |
8-BITS 8§-BITS

(ONE-BYTE} (ONE-BYTE)

Fig 5-1

54

16-Bit Load Group /
SOURCE /
/
mm, | EXT. | REG.
REGISTER ExT. | ADDR/ INDIR.
aF | Bc [DE| HL| s ix |1y | an | om | tsPy
AF F1
f ED
ac a ® | o
n n
n n
13
DE 1 8 | b1
(5) n n
n n
21 24
DESTINATION | REGISTER | HL - n E1
z n n
ED
sp g po |*FD | 31 78
(1 Fe | F9 n n
(1) » "
(2) 4 oo | oo | oo
(3) 1x 21 2A €1
n n
n n
FD F0 | FD
' 21 24 | B
! " n n
| n n
ED. | ED E0 | DO | FD
EXTEANAL | 83 |53 |22 |73 | 22 | 22
ADDRESS n n n n n n
n n n n n n
PUSH | REGISTER 1 oo | FD
INSTRUCTIONS | IND. (SPy[Fs | C5 | DS | €5 s | E5

NOTE: The Push & Pop iInstructions adjust the SP alter every axeculion.

Fig 5-2

(3)
/

(1)
\ 16-Bit Lo76/ Group

Symbalic Flags Qpcods Ne.aol NooftM Noo{ T
Wnemonie Operation s 2z H PV N C 28541210 Hes Byles Cycies Sistes
LD oa nn od - nn T e X = X v e 00 sald Qa1 3 _j- wo
-e-
W e ® st % e x e e . O oD e a u

L 00 00 0 21

(2} Fig 5-3

[C)]

55

The correct form for the source code can be found on
the next page titled 16-BIT LOAD GROUP (see fig 5-3 also)}.
On the leftmost column is the mnemonic column. Mnemonic
means assisting or intended to assist the memory. f
below the title MNENOMIC is the form for load immediate, LD

dd, nn. The LD, of course, means load. "nn" is the
immediate value -~ BLANK (1826) in statement 3. To
understand "dd" locate the column labeled COMMENTS on the
far right. "dd" tells the programmer what register pairs

can be used in the 16 bit load immediate instruction., Thus;

LD BC,nn
LD DE,nn
LD HL,nn
LD SP,nn

are allowed. To complete the LD HL,nn instruction, simply
fi11 the value for nn , e.g., LD HL,BLANK. LD HL,1826H
would produce the same result,

If you are hand translating the assembly language in-
structions you must use the chart on the previous page.
Remember that 21lnn that was found at the intersection of HL
and IMM,EXT 21 1is called the opcode (operation code). The
translation gives

212618
Why wasn't the result of the translation

211826

56

Because the low byte 26 must follow the opcode, then the

high byte 18. bon't fight it! You must write values this
way in Z80 coding. LD HL,BLANK translates into a 3 byte
instruction. The location counter will be advanced by 3 in

preparation for the next instruction 1868 + 3 —--> 1863. In
summary:

Location Counter Object Code Statement Nco, Source Code
1800 212618 - 3 LD HL, BLANK
Ex 5-3

Statement 4: PUSH HL

The PUSH instruction is used to move the contents of a
register pair or a 16-bit register to a specific place in
memory. To determine the assembly language code mnemonic,
turn to Appendix € and proceed to the chart 16-BIT LOAD
GROUP. Travel down the leftmost column labled Mnemonic
until the mnemonic PUSH is located. Since "gg" means that
BC, DE, HL and AF are allowed, this is the correct form. To
translate the instruction into machine language, refer to
the chart 16-BIT LOAD GROUP 'LD' 'PUSH' and 'POP'. The
source is the content of the HL register pair. Find
SOURCE, Register and then HL. For destination find the title
PUSH INSTRUCTIONS at lower left hand part of the page. Where
the column HL and row PUSH INSTRUCTIONS meet is the value
ES. This 1is the value you will enter. This one byte in-
struction advances the location counter by one 1883+1 -=>
18p4.

Details of the push instruction.

A PUSH instruction transfers the contents of registers
to a region in memory called the stack. The stack is
defined by a pointer called a Stack Pointer (sp). 1In
EXAMPLE 2 the stack pointer was set by the monitor before
you began execution of the program.

57

STEPS IN THE EXECUTION

OF PUSH HL

STEP 1l: DECREMENT THE STACK POINTER

<—Sp Before
¢<—SP <--SP-1 After

RAM memory

STEP 2: PUSH H ONTO THE STACK

H L
18 <—[1 8]2 6]

STEP 3: DECREMENT THE STACK POINTER

1 8, <«— SP Before
€«—5P «—5P-1 After

STEP 4: PUSH L ONTO THI STACK

H L
0 sz &)
[R — |

N1
|0

Ex 5-4

58

Statement 5: LD IX, HELP

This statement is very similar to statement 3, It is a
load immediate instruction. The 16 bit register IX is being
loaded instead of the register pair HL. The immediate value
is 182@8H (see statement 13). There is something new besides
using index register IX as the destination. This
instruction has two opcodes. Find the object code for the
instruction by turning to the 16-BIT LOAD GROUP 'LD' 'PUSH'
and 'POP' in Appendix C. The intersection of the source
IMM.EXT and destination IX shows DD2lnn. The two opcodes

are DD and 21. The reason fotr the double or extended
opcode 1is because the Z88 CPU, designed by Zilog, is an
improved 8088 (an earlier CPU designed by INTEL). Zilog

wanted the ZB88 CPU to be able to execute all of the 8088
instructions plus the ability to execute new instructions.
Some opcodes were not used by the 88886 CPU. If only one
opcode was used in the empty slots (unused 80888 opcodes),
only a few new instructions could be added. A double opcede
allows the DD to be followed by one of 256 different codes
(A@¢H to FFH). Now in place of one unused opcode, many new
instructions can be added. 1If you look at the row labeled
IX, you will see that all the instructions have as the first
opcode a DD. HELP is a label in statement 13. The value
of the location counter at this point is 1828. when you
translate LD IX,HELP to object code, the nn (2 bytes) will
contain 182@. The object code for LD IX,HELP is DD 21 20
18. Don't forget the lower order byte 28 is written
first followed by the high part of the address 18.
LD IX,HELP 1is a four byte instruction. The location
counter will advance by 4 1884 + 4 = 1808

Ex 5-5
Statement 6: LOOP EX (SP),IX
The instruction asks the computer to EXchange the two

byte pair currently pointed to by the stack pointer with the
contents of the IX register,

BEFORE:

tt
I X ss

y Yy
XX € sp

(RAM memory)

59

AFTER:

X tt

} ss

Yy XX | bb
aa€— sp

(RAM memory)

The first time this instruction is executed, the stack will
contain 1820H and IX will «contain 1826H. Because of the
exchange, the next time this instruction is used the stack
will contain 1826H and IX will contain 182@H. The action of
EX (SP),IX 1s to make index register IX alternate between
pointing to the message HELP US at 182¢H and the blank
display at 1826H. Enclosing an instruction in parentheses
indicates a memory reference. The stack pointer is enclosed
by parentheses (SP) thus the stack points to memory.

Ex 5-6
Statement 7: LD B,5@

The constant (immediate value) is loaded into the ;)
register. The exercise Ex 5-7 will explain this
instruction.

EX 5-7

Statement B: CALL SCAN1

A series of instructions which perform a definite task
is called a routine. A program consists of one or more rou-—
tines. The monitor contains several routines which the user
may wish to access. SCAN1 is a monitor routine which will
(as one of its actions) display the area pointed te by IX.
The display consists of 6 sections so IX will point to a six
byte region. A routine accessed by another routine or
program can be called a subroutine., The CALL instruction is
the preferred method to access a subroutine.

The CALL instruction breaks the sequential processing
of 1instructions by transferring control to a new address.
In statement 8 the new address 1is the entry point into the
routine SCAN1. The execution of SCAN1l is terminated by a
return (RET) instruction. The return instruction 1s used to
order program control to continue Jjust after the .CALL
instruction.)

60

instruction X address
of next
-

ot 7 o* [seduential

. gi’, oAt instruction sP
instruction y Béé// o >
@aq Rt xOQ
27 0
e - 3¢
&® /6301
-~
o+
CALL scanl ~ © to SCANI location 624

.

O« __Teturn by referencmq
~—_“-tfn by xert

next sequential RET

instruction the stack

How a CALL-RET Works CALL SCAN1

In reality when CALL SCANl is executed, the contents of the
program counter (PC) which already points to the next se-
quential instruction are saved on the stack. The contents
of the PC (186F), in Example 2, are pushed (saved) on the
stack. Now the program counter 1is loaded with the
subroutine address given the CALL SCANl instruction. (in
this example the address is @624H, SCANl). Program control
is now transferred to SCANl. When the return (RET)
instruction in SCANl is executed, the program counter will
be loaded from the stack. The value on the stack is the
address of the next instruction after SCANl, so control
returns to location 18@FH.

After the above explanation you may have forgotten
what's happening. The call to SCANl will use the six bytes
at BLANK to control the screen (displays). Zeros are sent to
the display in the MPF-I, which turns off all the segments
in a display. So BLANK blanks the screen, but only for a
short time,

EX 5-8
Statement 9: DJINZ HELFSEG

Statement 9 provides the solution to the very short
time that SCANl will blank out the screen., What is needed
is a method of repeating statement 8 which will aqain

display the current pattern that the IX register is pointing
to.

The DJINZ instruction will:

61

1) Decrement the B register. B was lcaded with a 5@
{decimal) so it will now contain 49(decimal).

2) Compare B with zero.

3) If B is not equal to zerc, program caontrol is trans-
ferred to the location given in the operand field.
The operand field contains HELFSEG so,the program
continues at the statement containing HELFSEG as a
label.

From the above you can see that statement 8 will be
executed 58 times wuntil B becomes zero. When B does egqual
zero, execution continues sequentially at statement 10.
Executing statements 8 and 9 fifty times will hold a pattern
of the screen for about 580 ms.

Ex 5-9
Statement 1@: JR LOOP

The J in this statement means Jump. A jump is a
transfer of control. The R means jump relative from where
the program counter is at this time. The program counter
has advanced to location 1813. The operand Loop in-
dicates a relative jump to the statement with the label
LOOP-—-statement 6.

Ex 5-19
Statement 11:

This 1is a sneaky way to get a line with nothing but a
semicolon. This comment line without a comment makes the
program easier to read.

Statement 12: ORG 182@H

Reset the location counter to 1820H, The following
data will be located at hex location 1828 and up.

62

Statement 13 to 24

DEFB means define a byte. That is: reserve a location
and enter a particular pattern at this location. The DEFB's
are used to generate display patterns (characters).

Ex 5-11
Statement 26: SCAN1 EQU 0624H

This "'statment is used to inform the assembler whenever
you see the operand SCANl put the hexadecimal number @624
in its place. EQU means equate.

Statement 27: END

An end statement informs the assembler that there is
nothing left to translate into object code.

It is possible to know what every statement in a
program does and not understand what the program is doing.
Lets trace the major actions of EXAMPLE 2.

The first time statements 1 to 6 are executed IX will
point to BLANK and a pointer to HELP is on the stack,
Statements 7 to 9 will keep the screen blank out for about
508 ms. Then statement 18 transfers the program control to
statement 6. Statement 6 will make IX point to HELP and put
a peinter to BLANK on the stack. Statements 7 to 9 will
display HELP US for about 580 ms. Again statement 10
transfers control to statement 6. An exchange of the
contents of IX and the stack occurs so that now blanks will
be displayed for about 560 ms. You must press either RS or

MONI to stop the alternating display.

63

Ex 5-12
TERMINATING A MESSAGE

Turn to EXAMPLE 1 in section 5.14. Key in and execute
the example. In each EXAMPLE only new features will be
discussed. There are three new features in this example.
One, only one screen pattern is displayed. In Example 2,
HELPUS alternated with a blank screen. Two, a different
routine, SCAN is used to display the message. Lastly, the
program can be Stopped by pressing a key, namely the [ETEH
key.

Program analysis
Statement 3: LD IX,HELP

Only one message is displayed and no blanking will
occur, thus IX is loaded with a pointer (an address) to the
message. wWhen either SCAN or SCANl are called the 6 byte
group pointed to by IX will be displayed.

Statement 4: CALL SCAN

You should read the explanation of SCAN in section 5.3.
You will discover:

1) IX points to the display buffer.

2) The message (contents of the display buffer) will be
displayed until a key is pressed.

3) The A register will contain the internal code of the key
pressed. See Statement 5 below for a discussion of key
codes.

4) The address of SCAN in the monitor is @SFEH.

Statement 5: CP 13H

tHow can the continuous display be terminated? Decide on
one key to terminate the program. In this program the [STEP)
key has already been choosen. The monitor program in con-

64

junction with hardware is designed to return a unique inter-—
nal code for any key (except [RS, [MON]I], [NTR, and [USER)
pressed. Actually a code dependent wupon the position of
key 1is returned first. The position code is converted into
an internal code when using SCAN. To determine the internal
code for ~ or any other key — refer to Appendix A
section 2; Internal code (CALL SCAN): You will find STEP in
the second row from the bottom and the fourth column from
the right. The code is 13H.

EX 5-13

What 1is needed 1is a method of testing the A register
for a particular code (key value). The compare
instruction - (CP 13H) <compares the wvalue 13H with the

contents of the A register. The details are:

1) Put a copy of the A register into a temporary register.

2) Subtract 13H, or any value given as an operand, from the
copy.

3) If the copy of A equals the test (choosen) value set the
zero flag. If the copy of A is less than the chosen
value, set the sign flag. Thus testing a maximum of two
flags can determine how the A register compares to a par-
ticular wvalue-when the compare instruction is wused before
testing.

In summary:

A = test value; zero flag is set.

A < test value; sign flag is set.

A > test vaue; neither the zero or sign flag is set.

Actually, using the results of the compare instruction
is easier than thinking all about flags as you will see in
the description of statement 6.

EX 5=-14

The compare instruction does affect flags. Turn to
the second page of the 8-BIT ARITHMETIC AND LOGICAL GROUP.
Find the set of «columns labeled Flags. Now find the row
labeled CP s. We will analyze the meaning of the first two
columns under flags. The S cloumn means sign (of the
comparison). There is an up down .arrow at the CP s position
in this colunn.

6b

Up arrow means if the result was negative, then the
flag will be set, In plain terms when the A register is
smaller than the test value, the sign flag is set. The down
arrow indicates the result was either zero or positive and
the flag will be cleared. Again in plain English, the value
cf the A register was not less than the test value.
Remember set means 1 and reset eans zero. The Z column
means zero, If A equals the test value, the flag will be
set (up arrow). If A is not equal to zero, the flag is reset
(down arrow).

Statement 6: JR NZ,DISP

The program should be designed to repeat the current

display unless any key but [STEP| is pressed. The compare
statement CP 13H resets the zero flag if any key but [STEF is
pressed, Then all that 1is needed is an instruction that

will jump back to CALL SCAN, labeled DISP, when the zero flag
is not set. JR NZ,DISP says transfer program control to DISP
if the result of the test (or any operation that affects the
zero flag) was non-zero (NZ). If the key was pressed,
then statement 6 <does not break the sequential flow of
instructions and the next instruction executed 1is HALT.
when a program cycles again and again through the same
sequence of instructions it is said to be looping. When &
test does not break the sequential execution of
instructions, the slang expression 'fallen thru' (to the
next instruction) 1is used. 1In this example, you could have
avoided understanding flags. Understanding the interaction
of

CP 13H and JR NZ,DISP

would be sufficent. Do a compare. If the A register equals
the operand of the CP instruction, then a JR NZ, label will
not jump to label. If the A register dosen't equal the
operand, then JR MZ, label will transfer contrnl to the
instruction with the label.

Ex " 15
Statement 7 HALT

The couputer has stopped looking for commands to
execute. The screen will go blank. To regain <antrol you

must press cither or [18]

66

Ex 5-16
Using (Calling) Two Monitor Routines

Turn to EXAMPLE 3 in section 5.18. Key in and execute
the examplé. Read the instructions given below the listing.
Statement 4 LOOP CALL SCAN

EX 5-=17

Statement 5 LD HL,OUTBF
EX 5-18

Statement 6 CALL HEX7SG

HEX7SG 1is a routine residing in the monitor. Turn to
section 5.5 and read about HEX7SG. The sequence of the

actions for a particular key press will now be described.
Assume that you pressed the key. Statement 4 CALL SCAN
will put the internal code for RELA into the A register.

—— A register

HEX7SG first converts the D into a 7-segment display format

]
D B3= 1

(D converts to B3) and then stores the byte B3 at location
OUTBF. Effectively, statement 1¢ now reads

OUTBF DEFB B3H

Next HEX75G converts the 1 intoe a seven segment display
format and stores the result at OUTBF+1

1 0 =]
EX 5-19

statement 12 and 11 now read

OUTBF DEFB B3H
DEFB 38H

Statement 7 JR LOOP

The jump relative command will jump to lecation LOOP.
Statement 4 (again) CALL SCAN

67

summary

Remember that SCAN will output the contents of the
display buffer and cycle until a key is pressed. When a key
is pressed the internal code of the into key is loaded into
the A register, What is in the display buffer. The first
two bytes contain the display codes for the bytes in the A
register. HEX7SG converted contents of the A register into
display code.

l. Actions of SCAN

{ sCcan

CLi L]

\\+% +3 + //4+4 +5
A
ou T -

F

w /7u

2. Actions of HEX7SG

2,

KEY CODE A register

HEX7SG

A register

TO DISPLAY| L“—OQUTBF

FORMAT UTBF+1

Open the MPF-I Experiment Manual (Software/Hardware) to
Introduction to Designing Microcomputer Programs. Read B.
Flowchart. One additional symbol you should know is

</ Name of
fpoutine
AN

\

68

A flowchart of EXAMPLE 3 is

LD IX with the address of OUTBF

Execute the routine SCAN

Load IY with the address of OUTBF

HEX75G Execute the routine HEX7S5G

LOOP

EX 5-20

A DISPLAY CONVERTER
Turn to EXAMPLE 4 in section 5.18. Key in and execute
this example.

EX 5-21

POLICE SIREN
Turn to EXAMPLE 5 in section 5.108. Key in and execute
this example.

EXAMPLE 5: Simulate a police car siren

The siren produced by this program consists of two
tones, each one 1lasting 0.73 sec. The two frequencies are
256Hz and 352Hz.

69

Statement 3 LOOP LOOP c,e

The frequency is controlled by the value in C. The
larger the wvalue of C, the lower the frequency. The note
produced is a square wave, The wider the square wave, the
lower the note.

High "1"
Low Freq—-J] l l [| Low mg"

High Freq] LU UL U LUTUUUUTL

The square wave is held high for the number of counts in C,
and then low for the same count. But the test for the time
to hold C high or low is done after subtracting one from the
value of C. What is one less than C? For all values except
zero, it is simple, e.g., 192-1 = 191 FEH -1 = FDH. What is
one less than zero? When the computer is using plus and
minus numbers, FFH equals -1. Thus one less than zero is
FFH. But the test for the square wave generator doesn't use
signs, therefore, FFH is equal to 255 decimal. In statement
3, the C register is loaded with zero. This will generate
the biggest number when tested by the tone routine and the
lowest possible frequency using the monitor tone routine.
The calculation given below the code in EXAMPLE 5 shows this
frequency to be 265Hz (Hertz=cycles/sec). This is close to
the middle of a piano keyboard (middle C). Occasionally,
computer programs use a trick, 1like one 1less than zero
having the effect of being a large number.

Statement 4: LD HL,@C@GH

How long will the tone at 256Hz sound? Another calcu-
lation reveales the period of one cycle at 256Hz to be 3777
micro seconds.

one 1 cycle
cycle
3777
mico-
seconds

1 cycle

70

The value in HL, when used by TONE, determines the
number of cycles and thus the length of the sound at a
particular frequency. At 256Hz a value of 2 in HL produces
a length of 7554 micro seconds——less than a hundred of a
second. In this example, HL contains the value @CBH which
equals 192 decimal. The length of the sound is 3777 micro
sec., X 192 = 0.73 sec,.

Statement 5: CALL TONE

In specifying parameters (values) for the TONE, you
already know that the frequency is set by the value in C and
the length »f a sound is contained in HL. Reinforce your
knowledge of TONE by reading section 5.7. Do not avoid
studying how to calculate the frequency and the tone length.

EX 5-22

71

Memory Checking

Turn to Memory Check section 6.1. Key in and execute
the program, Note the display and the condition of the HALT
LED. The HALT LED is a red light to the right of the
displays. Why did you run this program? Read further.

What are the areas of employment in the microprocessor
field? A partial list could be:

1) Chip (integrated circuit) designers -- the Z88 CPU 1is an
example of a chip requiring a high level of technology.
2) Hardware designer - the people who determine how the

components will interface.

3) Software programmers —-the MPF-~I the monitor is a software
program held in a PROM.

4} Applications programmers - The Music Box program
(Experiment — 18) is an application program.

Some additions to the list would be a sales staff., But
something wvery important (and a growing field) is missing.
The people who design tests., The wvarious ICs and the
computer as a whole should be tested. Testing starts with
the components. Your Z88 CPU 1is tested at the factory. The
tests guarantee that the 288 CPU will function over a
specified voltage and temperature range. Two built—-in tests
are provided for your convenience - a PROM test and a RAM
test.

EPROM Testing .

The information in a PROM doesn't disappear when the
voltage is removed. Some PROMs, EPROMs can be erased by
applying ultraviolet rays. PROM tests take advantage of
the fact that information in a PROM doesn't change easily.
Imagine a very small PROM containing only 4 locaticn (bytes)

Assume that the bytes are 02,01,83 and 006. Adding up the
bytes would give a sum of @06. If a byte contains an
incorrect value, the sum would be different. For example,

if the last byte were @1 instead of 0@, then the sum would
be #7. Since the sum is being used to check the PROM, it is
called a checksum. Even with only four bytes, the sum might
be larger than the largest value that a byte can contain.
Any carries out of the byte are ignored. In spite of

72

throwing away the carries,the sum in the byte will always be

the same in a healchy PROM and circauit. If vyou had a
eROM with 2048 decimal locations of which 2047 are needed,
you have a spare byte. Coulrd the spare byte be used to

produce a useful checksum? Yes, by adding the correct value
to the checksum of 2047, the result can be made to eyual
zero. As an example, adding 2 to a hexadecimal result FEH
produces a carry (which is ignored) and a byte containing
a zero. If the PROM rontine changed, the test programmer
changes the extra byte to guarantee a result of zero. Now
the PROM test only has to be written once. It is always
enough to add up all the bytes in the PROM and test for a
zero result. Your Micro-professor PROM test routine uses
this add-up-to-zero method.

Turn to the EPROM test section 6.1

Initialization

The statements

LD HL,0
LD EC,B80¢H

are called initialization code. The HL pointer is set to
the beginning address of the EPROM--zero in MPF-I. The BC
rejister pair is set to the number of hytes to be tonted,
The MPF~I monitor PROM holds 2K bytes, which equals 800
eraaecinal locations. Gty CALL ok, is mode to o
subroutine which adds up all the bytes in the monitor EPROM,
when the subroutine SUM completes execution a RET instruc-
tion 1is executed and control is returned to the relative
jump statement

JR Z,SUMOK

If the result of summing all the numbers in the A register
‘is zero, the relative jump on zero will transfer control to
location SUMOK. The command at SUMOK will transfer control
to beginning of the monitor location zero. If the sum of
the bytes in the PROM was not zero, then the Jjump relative
command will not transfer control and program execution
continues at the next command which will halt the processor
(MPF—-I).

73

ROM TEST Flowchart

STEP
START
1 INITIALIZE
HL<—4
BC<«——800@H

[}8)

3 YES NO|
4 HALT
5 RETURN TO THE MONITOR

INSTRUCTIONGS
LD H,@;BEGINNING QF PROGRAM

LD BC,8@80H;PPOGRAM SIZE

CALL SUM

HALT

RET

74

SUBROUTINE SUM FLOWCHART

STEP INSTRUCTICNS
START
1 CLEAR A
AND THE
CARRY FLAG XOR A
D
2 ADD BYTE TO
THE ACCUMULATOR| ADD A, (HL)
3
CPIl
JP PE,SUMCAL
4 SET FLAGS
RELATNE TO
THE VALUE OF OR A
REGISTER
5 RET RET

75

EX 5-23

The subroutine SUM

The flowchart of BSUM shows the actions performed by SUM.

Read the flowchart then proceed to the detailed explanation
of each command given below.

XOR A

XOR means exclusive OR. An exclusive OR operates on two
bytes. The contents of the A register is always one of the
bytes, the other byte 1is given in the operand field. The
command XOR B will exclusively OR registers A and B. When
bytes are exclusively ORed together, 8 bit pairs are ored to
form a one-byte answer.

Assume A contains 10101166 and B contains 11681018 then

XOR B

gives

8 bit pairs 110681018 register B
leg1911e 8@ register A
2119061140 result

What do you observed whenever the bits in A and B were the
same? The answer 1s zero. Whenever the bits were different,

the answer is 1. The "truth" table below shows this
relationship

A B XOR B
1 1 4]
1 %] 1
a 1 1
4] @ a

76

XOR A means exclusively OR A against A. All the bits will
be the same, thus the contents of A will be zero after XOR
A. XOR A is a sneaky way of clearing A to zero.

EX 5-24

ADD A, (HL}

This instruction adds the contents of the location pointed
to by HL to the accumulator register A, The first time the
instruction is executed, HL points to the first byte of the
monitor EPROM. The first byte of the EPROM is added to A,
A <-— @ + first byte,

CPI

The compare and increment instruction will:

1. Compare the contents of the A register with the location
pointed to by HL. This feature 1is not used by the
subroutine SEM,

2. Increment the HL register pair.

3. Decrement the BC register pair.

4. Test BC for non-zero, after it has been decremented. If
BC 1is non-zero, then set an indicator. The indicator
is called a flag, The flag used is the P/V flagqg, The
p/v flag is used in several ways. The next instruction
will show you one use for P/V.

JEP PE,SUMCAL

The JP PE,SUMCAL instruction orders the computer to transfer
control to SUMCAL, if the parity flag is set. Set means that
a "1" is in the flag.

P/V Comments
Set 1 also called on
Reset 5} also called cleared

77

The instruction CPI influences the actions of JP PE,SUMCAL.
If BC is not zero, then program control transfers back to
SUMCAL. BC was set to the number of bytes to be tested.
The result of CPI and JR PE,SUMCAL working together is that
control will be transferred to SUMCAL until all of the
bytes have been summed up. CPI and ADD A, (HL) alsc work
together each time CPI is executed. HL increases by one.
If control 1is transferred to ADD A, (HL), the next byte
is added to register A,

OR A

The results of executing an OR instruction can be
determined by using the "truth" table below

A B OR B Operands
1 1 1 Both one
1 [1 One Zero
4] 1 1 One Zero
%] [} 2 Both Zero

The conclusion you should draw from the table is that unless
both operands are zero, the answer is one. Another
conclusion is that if both operands are the same, the result
will be the same as the operands.

1 OR 1 gives 1 @ OR 9 gives 8.

ORing A against A will not <change the value of A, For
example

OR A 110610619 Register A
11661016 Register A
A 1lgeisle Result in Register A
Then why OR A? Because another action occurs. Certain

flags are set whenever an OR operation occurs. The flag
settings depend upon the result of the OR operation. If the
result of the OR operation is zero, then the =zero flag is

78

set. This zero flag is what we are interested in. If the
checksum was zero, then A contains zero. ORing zero against
zero gives zero with the =zero flag set. After the
instruction RET is executed, the next instruction is JR
Z,SUMOK instruction. This, of course, tests the zero flag.
If it is set, control is transferred to SUMOK. Look again
at ycur flowchart.

RAM TEST
STEP INSTRUCTION
START
1 INITIALIZE LD HL,1800H;POINT TO
HL<——1880¢H FIRST LOCATION
BC<———860H LD BC,8BPH;SIZE OF RAM
2 CALL RAMCHK
3 HALT
4
CPI

JP PE,RAMT

RETURN TQ RST
THE MONITOR

79

STEP

EX 5-25

SUBROUTINE RAMCHK FLOWCHART

RAMCHK

START

MEMORY CONTENTS
TO THE A REGISTER

ONE'S COMPLEMENT
OF THE A REGISTER

RETURN CONTENTS
TO MEMORY

MEMORY CONTENTS
TO THE A REGISTE

ONE'S COMPLEMENT
OF THE A REGISTER

RETURN CONTENTS
TO MEMORY

RETURN

80

INSTRUCTIONS

LD A, (HL)

CPL

LD (HL) ,A

LD A, (HL)

CPL

LD (HL),A

RET

RAM Testing

A RAM is designed to have 1its memory conts
altered. This property is used when testing RAM:
address the following procedure is followed. Lc¢
from memory into the A register. Change each zer

“1" and each one bit to a "@". This is cal.cu a one's
complement. Put the complemented byte back into the
original memory location, Lecad the complemented byte back

inte the A register. Again perform a one's complement and
put the result back into the orginal memory location. Now
compare the byte in the memory location with the byte in the
A register. A failure indicates a bad memory, or possibly a
bad address, bad data lines, or the CPU 1is not decoding
instructions correctly .

Why does this program work? That is how can it test a RAM? A
bad RAM chip has to exhibit a failure by returning an
incorrect bit or bits when read. Assume in the frame shown
below that bit 1 is stuck low {(will not go high) and that
bit 6 is stuck high (will not go low).

[WM T T T 1 Tt Ram memory location

When the location is read into the A register and
complemented, bit 1 will go high and bit & will go low.

7 6 5 4 3 2 1 @
LIt T T T 7T i) A register

Writing back the contents of A into the same memory location
will not change bits 1 and 6 in memory. Comparing the
contents of A with memory will give a non-zero result
bits 1 and 6 at the of two locations are not equal.

If the one's complement instruction appears to detect errors
then why are there two complement instruction? If you have a
healthy RAM, after testing all the memory locations, it
should be the same. With a single complement, they
won't be complementively twice restores each healthy memory
location to its origianl values.

EX 5-26
EX 5-27

81

Questions
5-1

Change the comment statement to read we don't need any help.
How would you separate the comment statement from the rest
of the program?

5-2
How would you make a program start at 1969H 2

Wwhat would the statement ORG C@@@H do? .
What is the effect of starting a program at 1@@H, ORG 18@H ?

5-3

Usc the 16-BIT LOAD GROUP charts in Appendix C to answer
the following questions. What is the opcode for LD DE,
BLANK ? How many bytes in the instruction LD BC,1826H? Is
the instruction LD AF,BLANK allowed? 1Is the instruction LD
DH, BLANK allowed? 1Is the instruction LD SP,BLANK allowed?

5-4

show with a drawing all the steps in the PUSH BC
instruction. Do the same for the PUSH IX instrucion. Hint
: use Appendix C 16-BIT LOAD GROUP SP-1 <- IXH means that
the high byte of the IX register (a 16-bit register) 1is put
on the stack first. Can a constant be pushed upon the stack?
Label the fields in the 1listing shown below

1883 E3 4 PUSH HL

5-5

flow can you verify that LD IX,HELD is the correct form
of the assembly language source statement? Using the table
16-bit LOAD GROUP Appendix C, find the column Symbolic
Tperation. What does the entry for LD IX, nn indicate?

82

5-6

Using Appendix C find the exchange instruction. What
is the title of this group? what is the opcode for
EX (SP),IX ? The DD again means? The location counter
was 1808 what will it change to after the EX (SP),IX
instruction?

5-7

The B register is an eight bit (one byte) register. How
many bits are loaded in the LD B,58? What instruction
group will give the object code for LD B, 587 Find the

correct group in Appendix C.

What 1is the object code for LD B,587

What 1is the source label ? What is the DESTINATION label ?
How many byte instruction is LD B,58 ?

Ahy does the 56 in LD B,50 translate to 32 in the object
code ? The title of the immediate column
in the 8-bit LOAD GROUP 'LD’ is IMME., and

the title in the 16-bit LOAD GROUP 'LD' 'PUSH' AND 'POP’' is
EXT.IMME. Why are the titles different ?

5-8

Find the CALL AND RETURN GROUP on the same page with the
RESTART GROUP-Appendix C. You will CALL SCAN1
ununconditionally. The condition column is labeled UNCOND.
The choice of the correct row should be easy, what is it?
What is the opcode ? How many bytes is the instruction?
What goes in nn? What is the object code for CALL SCAN1?

5-9

Read section 3.3.4 Relative Address Calculation. Try
using the RELA on the DJNZ statement in this program. What
is value of 5 2 What is value of D ? Find the
JUMP GROUP in Appendix C. What is the opcode of DJINZ?
THE e-2 means the relative distance to be Jjumped. In
statement 9, the value of this byte is FB. Explain what this
value means.

83

5-10

Find the JUMP GROUP in Appendix €. Now locate the row
labeled JUMP 'JP' relative., Note the ' 'P' should read 'JR'.
The first column under condition UNCOND is the correct
column. What is the opcode? The second byte of the object
code contains F5. How many bytes backward does this wvalue
represent? Show how to compute where the JR instruction
jumps. :

5-11

Study the display formats in Appendix A. Now change the
screen display from HELPUS to all 8's, Display your initials.
Use blanks in any position not occupied by your initials.

5-12

Projects

Some of the projects suggested in this paragraph may be
beyond vyour abilities at this time. Instructions not vyet
explained may be needed. You may want to start designing
your program noew. Or experiment with altering instructions.
How can you alternate alpha messages on the display? How
would vyou put a blank message between alternating alpha
messages? How can you have messages which are on the screen
for different periods of time? Design a program which will
move a display across the screen.

84

5-13

Give the internal codes for

Key 6 |1 5 Go MOVE MONI
Code | [1] 1[0 1|0 T] T 1 t1

Pind the 8-BIT ARITHMETIC AND LOGIC group in Appendix
C. The compare instruction 1is considered to be a logic
instruction. Find 'the row 'labeled COMPARE 'CP'. The
compare instruction in EXERCISE 1 is of type immediate so
find the . column labeled IMMED., What is the opcode for
comparé? 1In exercise 1 what value does n represent?

5-14

Can the contents of register B be compared to the contents
of register A?

5-15

Turn to the JUMP GROUP in Appendix C. Earlier the
UNCONDitional RELATIVE jump was examined. Now two new jumps
(conditional jumps) are examined -~ Jjump relative if =zero,
and jump relative 1if non zero. What is the opcode if Jjump
relative if zero? What is the opcode of jump relative if
non-zero? How could vyou determine the mnemonic for jump
if zero?

5-16

Write a program to HALT if any key with a' key code is
pressed except the [STEP| key. Write a program to HALT if the
G0l key is pressed. Write a program to halt only if the
key 1is pressed followed by pressing the minus [=1key. Test
your answers by running your programs. Start thinking about
this!

You may find the exercise difficult and you may not have
the backgound. Build a combinations safe. A plus indicates
a clockwise turn, and a minus indicates a negative turn.
The safe will only open if you enter R14 L35 R7. If give
the wrong combination an alarm goes off (for this problem a
1230HZ tone).

85

5-17

what will be displayed the first time statement 4 in EXAMPLE
3 is executed?

What locations does the display buffer use?

How is the routine SCAN able to find the display buffer?

5-18

what is the opcode of the instruction LD HL,OQUTBF?

The HL register pair is used as a pointer. What label and
address does HL point to?

Are there any other pointers to OUTBF?
Why is HL pointing to OUTBF?

5-19

The description in section 5.5 under register states destroy
AF, HL. Does this mean that these registers are useless
after being used by HEX7S5G routine.

What registers are destroyed by SCAN?

86

5-20
Why wasn't EXAMPLE 3 written as follows?
ORG 180¢H

LD IX,0UTBF
LD HL,QOUTBF

LOOP CALL SCAN
CALL HEX75G
JR LOOP
How do you stop the program? Why are there two EQU

statements? Add code to stop the program by pressing a key
other than RS or MONI. What is the problem with exiting on
a particular key code?

5-21

wWhy is EXAMPLE 4 of any wvalue?

where is the information to be dlsplayed stored?

Change the program to display |~ CL_.’: Al

Are there any instructions not prev1ously explained in this
program?

Why is B loaded with a 3?

5-22

How would you make each tone sound for .365 seconds?
liow would you make the lower sound last for .73 seconds and
the higher sound last 1,46 seconds?

How would you add one more tone?

You will now vary paramenters (values) and 1listen to the
results.
In statement 3 change @ to at least three different numbers.

In st atement 3 and 7 change @ and 1@8H to at least three
different wvalues. In statement 4 try loading different

87

values into HL. In statement 8 try loading different values
inte HL.

How do you make two tones of equal time intervals? Read all
of the information accompanying EXAMPLE 5 and the details of
the TONE routine section 5.7. Pick two tones say 4008 and
1980 cycles (Hertz) and the time interval (1 second).

If the fregquency is already known, then to find C use the
formula.

200
C = [———mee - 1@ / 3 =72

Freq in KH

For 40@ Hertz

Now compute the length of each sound at 400 Hertz
at 1090 Hertz
For equal time intervals of one second at 480 Hertz
at 1609 Hertz

In summary

TONE | VALUE OF C | .vALUE POF HL

400
1009

88

5-23

Find the RESTART GROUP in Appendix C. What is the
opcode for RST @ 7?7
A restart instruction is a special form of a CALL
instruction, RST @ is equivalent to CALL @0AGH. How many
bytes in a restart instruction ? How many bytes is a CALL
+ ruction ? Does a restart instruction save bytes? To
‘ocation does RST @ transfer control ? What happens to
the .- 1tents of the old (next sequential location) program

counter 7

Can the contents of the old program counter be accessed ?

5-24
The subtract instruction could also be used to clear A.

For example SUB A,A subtract A from A would zero out the A
register. Why wasn't SUB A,A used?

5-25

How would you test several PROMs and report which ROMs
failed.

5-26

The Z-88 has another complement command NEG. This command
will take the negative of the value in the A register. What
is the opcode of the NEG?

How is the negative of plus two produced?

5-27

What does the CPI instruction do?
Writes a RAM test for a 4K RAM memory beginning at 2000H.

89

Answers
5-1

{
(;

;
i
1
7
H

WE DON'T NEED ANY HELP]
WE DON'T NEED ANY HELP]

A semicolon does not have to be followed by text-—-comments.

5-2

{ORG 19@@H]

[Your code would start at hexadecimal location C@@@. But
the MPF~I as delivered does not have any memory at this
location--so an ORG C@@0H might be a poor placement of the
object code.]

[This is the space occupied by the monitor. Unless you are
modifying or writing a new monitor locations, @88@H to @7FFH
are to be avoided].

5-3

[11)
[3]
[no]
[no]
[yes]

S-4
[No, no entry under IMM EXT]
[LOC] [0OBJ CODE] [STMT] [SOURCE STATEMENT]

5-5

[Look in Appendix C 16-BIT LOAD GROUP second table entry
from the top.]

[IY <-~-= nn means that the immediate value nn will be loaded
into the IX register,]

5-6

[Exchanges 'EX' AND 'EXX'. This group follows the 16 bit
load instructions.]

[DDE3]

[a double opcode]

[18PA-not 1818 the program counter uses hexadecimal values.]

80

5-7

[8-BIT LOAD GROUP 'LD']

{86 n or B6 32)

[IMME.]

[REGISTER,B]

(2]

{58 is decimal, 32 is hexadecimal]

[The EXT. means extended and indicates a bigger immediate.
16 bits as opposed to 8 bits,]

[2]

5-8

[CALL, IMMED. EXT]

[CD}

[3]

{The location of the subroutine in EXERCISE 2 is the address
of SCAN1]

[CD 240G6]

5-9

[188F]

[180C]

(1)

[FF means jump back 1 byte. FE means jump back 2,
So FB indicates a jump back of 5 (FF-1, FE-2, FD-3,
FC-4, FB-5). A two byte backward jump will put the
program counter at the beginning of the DJNZ instruction.
3 more Dbytes puts the program counter at the beginning of
the CALL SCAN1 instruction-label HELFSEG.]

5-10

[18]
[11 decimal, B Hex]
[1813-B = 1808 remember the program counter is at 1813]

5-11

[Enter BF in location 1828 to 1825]
[My intials are RJB so in locations 1820 to 1825 I would
enter 03,B1,A7,00,00,00]

5-13

KEY 8 1 5 GO MOVE MONI
Code @8 61 @5 12 1C X
[FE]

(13)

91

5-14
{ yes CP B }

5-15

(28]

{20]

[Turn to the second page of the JUMP GROUP. Under mnemonic
find the JR commands. Urder symbolic operation find if Z=0
continue, if Z=1 PC <- PC + e. Remember if 2=8 the zero
flag was not set the result was not zero and one jump
occurs. If Z=1 the contents of the PC is changed. Namely,
jump if result is zero. The mnemonic is JR 2Z,e. 1In
Exercise 1 e means the distance to jump.]

5-17
[Blanks]

[19009)
[SCAN uses IX to point to the display buffer]

5-18

[21]

{OUTBF, 1980)

[Yes, index IX]

[We don't know yet. Statement 6 will reveal all]

5-19

[No, it means that HEX7SG wrote over the previous contents of
AF and HL . Perhaps one should say alter rather than des-
troy.]

[AF, B, HL, AF', BC', DE']

5-20

{Because SCAN changes the contents of HL]
[Press Moni or RS])

[Two constants are needed. One for CALL SCAN and the other
for CALL HEX7SG)

ORG 18¢2H

LD IX,0UTBF

LOOP CALL SCAN
CP a key code; This is the key code
JR EXIT; That stops the program
LD HL,OUTBF
CALL HEX7SG
JR LOoOP

[One key code will not be displayed]

92

5-21

[Because once the basic actions are understood, you can use
this routine in a longer program to display results]
{Statements 16,17,18 locations 1900,1981,1982, The label is
BYTE®3)

[Change statement, 16,17 and 18 to

1940 BA 16 BYTEO DEFB OBAH
1901 DC 17 DEFB ODCH
1962 FE 18 DEFB OFEH

[Yes INC DE- increment DE adds one to the register pair DE]
[Statement 19 is also new. DEFS 6 define storage reserves a
number of bytes, 6 in this case, in memory. This area is
used as a display buffer.]

[So that the loop shown below

LOOP LD A, (DE)
CALL HEX7SG
INC DE
DJINZ LOOP

will be executed three times . The first execution of the
loop will convert the two digit (18) in BYTE @ to display
code and put the codes in OUTBF and OUTBF + 1. The next
loop will convert the two digits (32) in BYTE 8+1 to display
code and put the codes in OUTBF +2 and OUTBF +3. The final
converts 54 and puts the result in OUTBF +4 and OUTBF +5.

5-22

{Change statements 4 and 7 to

statement 4 LD HL,068H

statement 7 LD HL,80H]

[Change statement 7 to statement 7 LD HL, BFFH)
[After statement 8 add the code

LD C,P66H
LD HL, AEGH
CALL TONE

[163]

[63]

[44 + 13 x 163} x 2 x 0.56 = 2423 micro sec]
(44 + 13 % 63)] x 2 x 0.56 = 967 micro sec]

93

1/242%3 x 9.600001 = 1/.002423 = 412 periods
1/.000967 = 1934 periods

TONE VALUE QF C VALUE OF HL
429 163 412
19088 63 1034

5-23

[C7] [1] [3]). [YES] (0@000H)

[Just as in the CALL instruction the program counter is
saved on the stack]

[Yes 1f no other instructions that affect the stack are
used, a RET (return) instruction will reload the program
counter,]

5-24

[The XOR instruction always clears the carry flag, even when
the operand isn't A (e.g. XOR B). The SUB A,A also clears
the carry flag but it is easier to remember this fact when
using XOR actually either instruction is equally good.]

5-25

[Test each ROM separately. When any ROM fails, save the
address range of that ROM. When all ROMs have been tested,
report the ranges of ROMs that failed.]

5-26

{There are two opcodes ED and 44. This is an extended in-
struction. This instruction is not present in the 8¢89/85

computers. Observe the number chart below:
Hex Binary

g2 99900013 plus two +2

Bl 00009081 plus one +1

00 00000008 zero 4]

FF 11111111 negative one =1
FE 11111112 negative two -2

[Write the value of plus two in binary
00000010
Take the one's complement-—-toggle each bit

11111181

94

Add one

11111101
+ 1

11111111
We have
F E

NEG gives a result which is one greater than one's com-
plement and thus is called the two's romplement.

5-27

[It dec¢rements the contents of the BC register so that the
JP PE,RAMT instruction can determine when all of memory
has been tested. Remember BC contains the memory size.
The CPI instruction also advances the memory pointer HL to
the next location to be testad.]

[Only the first two instructions need to be changed.
LD HL,180@8H becomes LD HL,20@d¢H and LD BC,80@H becomes
LD BC,1000H.]

95

CCCCCCC

Useful Routines

Once a program 1is tested and debugged, any part, or
all, of the program can be used as a subroutine in a lerger
program, You can build up a libary of useful routines by
understanding how to use the programs presented in this
chapter. Knowing how a program works permits you to tailor
it to a specific application. \Understanding a program also

allows you to write a more power ful general
subroutine-~e.g., extending the range of a multiplication
routine. All of the experiments referred to below are in

the MPF-I Experiment Manual unless otherwise noted.

Some basic principles—Applications of arithmetic
and logical instructions

Turn to Experiment 2 Basic Applications of Arithmetic
and Logic Operation Instructions in the MPF-I Experi-ment
Manual. Read Section I, Theoretical Background. Some of
the concepts presented in this section are for your review.

Adding is considered to be a fundamental process. You
can add numbers rapidly because you have memorized the one
hundred basic combinations such as: 3 + 4, 8 4+ 7, 8 + 9,
and 9 + 8. The computer has been given a few rules also.
The Z8@ CPU instruction set allows either 8 bit adds (one
byte) or 16 bit adds (two bytes). In 8 bit adds, the A
register is always one of the numbers added (augend), and it
also contains the result (sum). .

Permissible 8-bit Adds

In the MPF-I User's Manual, turn to Appendix C. Find
the 8-bit Arithmetic and Logic Chart. Find the row labeled
ADD. The registers that can be added to A are given under
Register Addressing (Fig. 6-1).

S0URCE
REGISTER ADDRESSING
A B C D E H L

P

Any of these can be added to the A register
Fig 6-1

08

The Assembly language instructions are of the form

ADD A, r

where r is any one of the registers A,8,C,D,E,H,L. You can
verify this by turning to second page of the B8-bit
Arithmetic and Logical Group and looking at the first entry
in the column labeled Mnemonic (fig. 6-2).

The permissible values of r (fig. 6-3) are listed in
Comments column. To perform an add of two with registers,
both the A register and the selected register (the r
register) must be first loaded.

mnemonic
ADD A,r
Fig 6-2
Comianents
r Req
ape B
pol C
310 D]
a1l E Per iissible values of r
lap H
10l L
111 A
Fig 6-3

Exercise 6-1, 6-2

The value to be added to the A register may be accessed
from memory by using the HL register pair as a pointer (fig.
6-4). The source is register indirect (REG. INDIR). This
means that a register (or register pair) will pcint to the
byte in memory to be used as the source.

REG
I~DIR

(L)

Fig n-4

99

Exercise 6-3

) Two other pointers to memory are permitted. Either
index register IX or 1Y may point to the byte to be added to
the accumulator--aA register(fig.6-5). An offset of up to
+127 or down to ~128 is allowed with either index registers.
The source is named INDEXED.

INDEXED

(I1X+d) (IY+D)

Fig 6-5
Exercise 6-4

A constant may be added to the A register. The column
labeled immediate 1is used to determine the hex code (fig.
6-6). The range of decimal numbers that can be used in a
signed add is +127 and -128.

IMMED

n

Fig 6-6

Exercise 6-5

If the result of an addition has to be contained in a
byte and all the numbers were unsigned--essentially always
positive, then the largest answer would be 255 (decimal)=FF
({hexadecimal), Even more restrictive is the use of signed
numbers. The leftmost bit 1is used for the sign of the
number. Then only 7 bits are available for the size of the
answer. The largest result would be 127, the smallest-128.

Exercise 6-6

Fortunately a method of extending the size (precision)
of numbers used in addition has been provided. When- ever
two numbers are added, the result is checked by the Z8p for
a carry. If the two numbers didn't produce a carry, a flag
called the carry flag 1is reset (cleared). If a carry is
produced, then the carry flag is set. The carry flag adds
an extra bit in the answer.

100

ADD A,B

8 bits

:'Register A Augend
8 bits

[:::::::]Register B Ad:dend

carry flag 8 bits

Register A SUM

9 bits

Now an unsigned answer can be as large as 511 (decimal)
= 1FF(hexadecimal). Proper use of the carry flag can extend
both the size of unsigned and signed additions; the process
is explained in the following example. The program shown
below is the first example 1in section 1II. Example of
Experiments under Experiment 2.

Statement Source statement
1 ORG 18@8H .
2 LD A,E
3 ADD A,D
4 LD L,A
5 LD A,9
6 ADC A,0
7 LD H,A
8 RST 38H
Diagram

[D register Augend
E::::::] E register Addend

I J Result

101

Statements 2 to 4

A conventional add of D and E with the 8 bit result in L.

Statement 5

The A register is zeroed out.

Statement 6

The add with carry, ADC, instruction adds the two operands,
A and zero, and the carry flag together. The result is in
A, The carry flag was set or reset by the ADD in Statement
3. The reason for the ADC A,0 was to transfer the contents
of the carry flag to the A register.

Exercise 6-7

Statement 7

Transfer the carry (or no-carry) that was loaded into A into
H.

Statement 8

The RST 38H instruction enters the monitor without executing
the power-up code.

Exercise 6-8

The second example (Example 2) wunder 1II. Example of
Experiments (In Experiment 2 in the MPF-I Experiment Manual)
can best be explained by a diagram.

102

1a81 13406 Memory location

D E Registers

H L sSum

Exercise 6-9

Exercise 4 is also best understood by using a series of
diagrams and a flowchart.

First pass through the loop

+11

+18
sum

+9

+8

second 7 Add IX énd IX+4
operand result (sum) in IX+8
D

+6

S

+5

+4

first +3
operand

+2

+1

IX+0@

103

Second pass through the loop
+11

+10
+9
+8
+7
+6 N
+5 Add IX+1 and IX+5
+4 result (sum) in IX+9
+3
+2
+1
IX
Location of the operands
+3 +2 +1 IX+0
T T T e
+7 +6 +5 IX+4
Addend
+11 +19 +9 IX+8

I

104

Flowchart Instructions

{ start) ORG 1800H

Initialize
B<{~4 LD B,4
IX<-1A0QH LD IX,1A08H
Clear carry flag AND A
A <= (IX) LD A, (IX)
A <= (IX+4) ADC A, (IX+4)

(IX+8) <--A LD (IX+8),A

IX <~IX+1 INC IX

;

{

DEC B
JP NZ ,LOOP
Return to RST 38H

monitor

105

Study the charts, diagrams and the code. You should be
able td understand how the program works,

Exercise 6-10
Exercise 6-11

Read the instructions in Example 5 (Experiment 2, MPF-I
Experiment Manual).

The DAA stands for Decimal(ly) Adjust the Accumulator.
Consider the problem below

99
+98

The result should be 197, 1if a decimal answer |is
desired. The computer will display the result of 9+8 as
l6+1l. To the computer 16 means produce a carry so put down
a one and carry 1.

1
99
+98
1

Now 9+9+1 will be seen as 16+3. Put down a 3 and carry

99
+

ol 31

Carry

For reference purpose, the right hex digit in a byte is
called the right nibble and the left hex digit, the left
nibble,

L3 [1]

Left Nibble Right Nibble

106

The carry bit is a flag altered by the add instruction.
Another flag affected by the add instruction 1is the half
carry flag. Whenever a carry is produced by adding the two
right hex digits, a half carry flag is set. Adding 9+8 did
produce a carry, so the half carry flag is set. The DaA
instruction will add 6 if the left nibble is a hexadecimal
number or if the half carry flag is set.

99
98 Half Carry
Carry 31
6 DAA instruction
—

Then 1if the left nibble is a hexadecimal number or if
the carry flag is set then a 6 bit 1is added to the left
nibble.

939
+98

37
+6

97

Carry

Now you have the correct decimal result. Nibble is
sometimes spelled Nybble.

Exercise 6-11b

Experiment 3 (MPF-I Experiment Manual)--more addition and
subtraction.

Read Theoretical Background Section I.

Exercise 6-12

Read Theoretical Background Section 2,3, and 4.

107

Exercise 6-~13

Perform II.1. 1in the II., Student Exercises.

Exercise 6-14

Perform II.2. 1in the Student Exercises. Read Exercise 6-15

first.

Exercise 6-15

Perform IT.3. in

Exercise 6-16

Perform II.4, in

Exercise 6-17

Read and perform

Exercise 6-18

Read and perform

You can use both

the Student Exercises.

the Student Exercises.

Experiment 3-1 in the Student Exercises.

Experiment 3-2 in the Student Exercises.

ADD A, {nn) and ADC A, (nn).

108

Experiment 4: Branching and Looping

Read Theoretical Background part 1,2, and 3 in
Experiment 4. By now you should understand the carry and
zero flags. Parity will now be explained. Consider the
circuit below

Receiver

Transmitter

D G s N

~l h

For transfer of information, you need lines 8 to 6.
Line 7 is an unused spare. If a 3 was sent lines # and 1
would be high 11 (binary)=3 (decimal). 1If line @ was open,
then a two would be sent 19 (binary) =2 (decimal). How
would the receiver know that line @ is open? 1In the diagram
above, there is no way of knowing.

A transmitter can be designed to count the number of
set bits in each transmission on lines & to 6. Furthermore
the transmitter can wuse 1line 7 to always make the total
number of set bits in lines 0 to 7, odd or even. If an odd
number of set bits 1is desired (even parity), then line 7
would be high when a three is sent. The byte would be 1600
A@ll. If a four is sent, line 7 is held low-—-@0080 6166. A
five gives 1008 9181. Bit 7 is used as the parity bit. A
receiver can check parity by using either a fixed hardware
design or software.

The transmitter and receiver are made to agree on
whether even or odd parity will be used, A parity error
results when a line is open, grounded, or shorted to another
line. The receiver detects the parity error and informs the
operator of unreliable transmission. °

109

Parity can be tested by software by using one of the
following logic commands AND, OR, XOR. ANDing the A
register will test for even or odd parity and does not alter
the contents of A. .If an odd number of bits are set (on,
high) in the A register, then the parity flag (P/V flag) is
cleared (reset, =zero). If an even number of bits are set,
then the parity flag is set (on, high).

Exercise 6-19

Now read the remainder of I. Theoretical Background.
How does one understand a new program? For example, the
program loop in Section 5. The first thing you hope for is
good documentation. Documentation consists of explanation
in the form of paragraphs and comments given with most
instructions. Many programmers "play computer™. As they
read through the ©program, they pretend that they are the
computer and ask what is happening to the registers, the
memory, and is data being sent to or received from external
devices (peripherals). Restudy the program loop and play
computer.

Exercise 6-2¢

Experiment 5: Stack and Subroutines

Read about the stack which is discussed 1in section I.
Theoretical Background. Be careful most of the instruction
numbered (1) to (17) don't exist in the Z8@ instruction set.
They are wused to demonstrate how PUSH and POP work. The
program

LD 5P, 1FAFH
PUSH HL
PUSH AF
POP BC
POP DE

is shown below with drawings

LD SP,l1FAFH SP— 1FAF
1 FAE
LFAD
FAC

RAM Memory

110

PUSH HL

(2)

H L sp(l) { 1FAF
IT_|IFAE
(77 j1FaD

(4) [JLFAC

1) Decrement the stack pointer.
2) Contents of register H to the stack-~-H is not changed.
3) Decrement stack pointer.

4) Contents of register L to the stack--L is not changed.

PUSH AF 1FAF
Al F 11 1FAE
[33] 44] 22 1FAD
33 1FAC
44 1FAB <-SP
POP BC 1FAF
(3) 11

1FAE
L 22 1FA (4)
B c (1) 33 1PAC<4(2)
[33 [44] a4 1FAB <-SP

1) The contents of the top of the stack are loaded into
register C.

2) Increment the stack pointer. Now the top of the stack
is 1FAC.

3) The top of the stack is popped to register C.

4) Increment stack pointer.

111

POP DE

1FAF
D E L_
1| ieac

22 1FAD
33 1FAC
44 1LFAB

1FAA

Read Section 2. Subroutine:

Exercie 6-21

BCD stands for Binary Coded Decimal. What this means
is that the computations will be in a decimal form. This
allows operating on decimal numbers (adding, subtracting,
etc.) The reason for the DAA (Decimal Adjust the
Accumulator) instruction at statement 12 is to insure a
decimal result after each addition. Each time the computer
adds, it produces a hexadecimal result which must be
converted to decimal.

Read II. Example Experiment of the Experiment 5.
This experiment should read: Perform the following

BC — HL
DE -> BC
HL —» DE

using stack operations

Exercise 6-22

Experiment 6: Rotate Shift Instructions and
Multiplication Routines

112

When a CPU chip 1is designed, the designer decides what
features to incorporate. There is a limited amount of space
(Real Estate) in a chip. The instruction set must be
choosen very carefully. Until recently chips containing
multiply instruction were expensive and sometimes very
specialized. How can a useful CPU be built that doesn't
contain a hardware multiply instruction? A hardware
multiply means that the multiply is accomplished by circuits
built into the CPU chip. A multiply is a series of actions.
You can multiply by wusing a series of instructions other
than the multiply command. A very essential instruction is
the ability +to shift and/or rotate. Read Section 1. under
the Theoretical Background. This section will introduce you
to the rotate and shift instruction group. Don't try to
memorize the instructions in this group. There are too many
of them.

Exercise 6-23

Read Sections 2. Binary Multiplication: to 5. Program
flowchart.

These are not easy sections. The object is to show you

how to multiply by shifting, bit testing, and adding. Read
these sections several times.

Follow II. Example Experiments:

Exercise 6-~24

Experiment 7: Binary Division Routine

Read 1. Binary division by hand calculation., If you are
overwhelmed (snowed) by the explanation, you have a binary
choice. You may accept that the division method works and
proceed to 2. Division Program Design or read the
explanation below.

113

The problem is really

10100) 11191101 ==> 20) 237

The first step is

19160 }111011¢1«—dividend
divisor

shift divisor until it becomes smaller then the dividend

2p0601 quotient

illlﬂll@l
18100

Then put a one in the quotient.
Now subtract

00001

i 11161101

lglpe
1901 <«—— New dividend

114

Bring down the next digit to the new dividend

1glpe Y111@1101

lglaa
16011

Test the divisor

a08al1
19198 J 11181161
10180
18911
19100

No, dividend 1is too small. So put a zero in the quotient
and bring down the next digit

¢p010

19100 11131101

12189
190110

Now divisor is smaller than the dividend. Put a one in the
quotient and subtract.

BEena1ol

10100 J11161191

10100

100110@
13198 Subtract
12618 New Quotient

Bring down the next digit.

115

8000101

10166 11101161
10100

1606110

19109

100191

Divisor is smaller
and subtract,

A0g81811

lﬂl?ﬂ JIT1e1101

T 100110
divisor 101008
(2¢) __1eslel
19108
lp6al

than dividend. Put a one in the quotient

11 quotient
<~quotient (17) divisor 2@/337___5T3TEE?_
<~dividend (237) 29

37

20

17 remainder

<~remainder(17)

Read 2. Division Program Design

Exercise 6-25

Experiment 8: Binary~to-BCD Conversion Program

Read only 1. Methods of binary-~to-BCD conversion. A sample

conversion--Convert

200108011 (binary) to decimal. The correct answer is

19 (decimal).

116

Number to be converted

Plee1l gB1l

Shift most significant
carry, and

carry, add,
BCD number

g@e1 ee11
Add, carry,
BCD number

20@1 2011
Add, carry,
BCD number

goel 2911
BCD number
Add, carry,

0951 @211
Add, carry,
BCD number

2081 @@Ll
Add, carry,
BCD number

2331 Be[IL
Add, carry,
BCD number

peal geld
Add, carry,
BCD number

Execute a DAA instruction because

and

and

and

and

and

and

and

double

double

double

double

double

double

double

a half carry occured
Add 6 = 8118 (binary)

inte
double

117

BCD area

00868

goee
oppe

0000

peop
oeep

eepo

gaoe

00008
0000

6e08
0o08
+0

6000

2008

G080
op0p

2000
oooe
+8

[“153°)]

0000

2000
0e00

20606
1217}

2000

2009
0206

2001

9881
eepl

¢e18

(2214}

200
o110

00882
0900
0o
LT}
00008
eBag

2001

gepl

+
peel

0010
0010

6109

ploe
3100

lepl

lgal
1601

gg11

2911
8110
1961

The answer is 19

A second conversion converts 1111 1111 (binary) to 255
(decimal). The purpose of the shift into carry flag is so
that the selected bit can be added to the shifted result.
Each add (dcouble) and shift in carry will be shown as one
step

Number to be converted Zeroed out BCD number
1 1 1 1 1 1 1 1 9000 @000 0000 0000

T

(1) (2) (3} (4) {(5)(6) (7) (8) decimal
Shift and add bit (1) 0000 0000 00P0 6001 1
shift and.add bit (2) 0000 0000 0600 0011 3
shift and add bit (3) 0000 0000 G066 0111 7
shift and add bit (4) 2000 0000 0066 1111

BCD adjust #1190

3000 0000 0081 G101 15

Shift and add bit (5) 600 6060 2018 1811
BCD adjust - g11p
00P 9000 AP11l @@Al 31

shift and add bit (6) poP0 0PB9 2119 @811 63
shift and add bit (7) 0900 0000 1198 0111
BCD adjust p11@

age0 8021 2019 /111l 127

Shift and add bit (8) pRoRe 8012 2198 1111
BCD adjust 911@
pepd 9010 9181 B1G1 255

The answer 255 1is correct. Read 2. Assembly Language
Programming Technigue

Exercise 6-26

Example Experiments

118

Exercise 6-27

Experiment 9: BCD-to-Binary Conversion Program

The basic method of hand conversion is given in 2.
Principle of the checking process (3) under Theoretical
Background. As you can see by dividing the number to be
converted repeatedly by 2 and saving the remainder, a rather
easy conversion is obtained.

Exercise 6-28

Now a method of dividing over and over by 2 is needed.
Shifting a binary number to the right always divides by 2
with a remainder of 1 or #. Shifting a BCD number to the
right will give an incorrect result in two bit positions in
each byte. Read 1. and 2, under Theoretical Background.
The shifting problem is explained.

Conversion from BCD to binary is rather straight foreward.
The program must: (1) divide by 2 ({2) save the remainder
(3) correct two bits in each byte of the BCD number,and (4)
have two loop controls—-one for the number of BCD bytes and
a second one total number of divides respectively.

Exercise 6-29

Experiment 18: Square-Root Program

Square root has never been considered one of the easier
methematical operations. Years ago, the only easy method
was to wuse square-root tables, Various other methods
existed for those who were interested in expanding mental
effort--slide rules, logarithms (again tables), and a hand
method which consisted of doubling dividing, and
subtracting. The hand method given in this experiment is
easier than one taught in schools before <calculators.
Binary numbers lends themselfs to square root computations.
Read 1. Calculating square roots of binary numbers by hand.
Try very carefully to follow the processes.

119

The square root of larger numbers can be calculated by
enlarging X,Y¥, and R. The square root routine in section 2.
expands the size of number whose square root is to be found
and the size of the answer. First read only up to the
program. Now you will match the program with the flowchart.

Statement 7: LD A,B

The original data is not stored in register A and C but
in BC. So statement 7 loads B into A.

Statement 8: LD B,1l6

The original data to be shifted is contained in two
registers A and C. The 16-bit data is shifted two bits at a
time so the shift count would be 8. The fractional part of
the answer is 8 bits, thus 8 more shifts of 2 bits each time
are required. The total shifts, tests and subroutines are
16.

Statements 9-11

These statements will zero out the X area, HL, and the
R area, DE. HL ¢ DE < @

Statements 12-13

Statement 12 subtracts (N) 46H from the contents of the
accumulator. On the first pass, A will contain the upper
part of the original data. Statement 13 subtracts R, (DE)
from X, (HL).

HLA ¢— HLA<-DEN
XY XY RP

Statement 14

If DE 1is less or equal to HL, then the results of the
subtraction performed in statement 13 are to be kept. In
this case, the carry flag will not be set and control is
transferred to location 801 statement 17. If DE is greater
than HL, the number in HLA, XY needs to be restored.

120

Exercise 6-30

The square root of 81 and 16 are whole numbers
{integers). For a more interesting case, consider the
square root of 58. The square root of 58 is approximately
7.615. 1In binary numbers, a bit represents twice as much as
the bit to the right and half as much the bit to the left.
In 111, the middle bit represents value of 2. The left bit
is equal to 4 decimal and the right bit is equal to 1
decimal.

1 1 1
4 + 2 + 1 = 7 decimal
what is one-half of one? One-half (1/2). Going to the

right of the binary point gives .1 (binary) which equals .5
decimal. The next position to the right is one half of 1/2
or 1/4 (.25)

.81 (binary)=.25 (decimal) To represent .75 use two bits
.11= .5 (decimal)+ .25 (decimal)= .75 (decimal) To obtain
decimal (fractional) results in taking square root, continue
the shifting process beyond the integer part of the number.

Interger result only

X Y 58 (decimal)
i pei1isid
[{91 |
R P
Shift the wvalue in XY 4 times (2 bits each). The result R
will be 9008 8111 (7 decimal).

Fractional result

Shift the value in XY four more times. Now bits representing

1/2 .5
174 .25
1/8 .125
1/16 .0625

have been used, the answer is:|fl1l1l1.1281

121

Under these conditions the carry flag will be set -- the
jump instruction will not break the sequential flow and
statement 15 is executed next.

Statements 15 and 16

The original values subtracted from A and HL are added
back in. Thus the original number is restored except the
carry flag will be set. Remember this!

STATEMENTS 17 to 19

The «carry flag will be shifted into R (register D & E
y., If RP (register D, E and a constant are smaller than or
equal to XY (register H, L, A, and C) then the carry flag
should be one (set). If RP was greater than XY then the
carry flag should be zero (reset).

However, the subtraction in statement 13 has left the
carry flag in the opposite condition, thus statement 17
complements the carry flag. Statement 18 and 19 rotate D
and E one place to the left, The carry flag enters the.
rightmost bit of E.

STATEMENTS 2@ to 26
The first shift to the left of H, L, A and C is
performed by statement 21 to 23. The second left shift by

statement 24 to 26. Statement 21 -- shift C to the left one
bit and put a zero in rightmost bit. Statement 22 —- rotate
A to left and receive the carry from C. Statement 23 -—-

shift HL to the left by doubling the register pair HL and
accept the carry from A by adding with carry.

-— #

'E—]JLD IAJDIC_D

ADC HL,HL RLA SLA C

Statement 28 —-- Loop back 15 times (a total of 16 passes)
to SQO.

122

Questions of Exercises

6-1 Which of the following instructions are not allowed
-~ give the reason?
a) ADD A,B b}ADD E,A c)ADD A,HL
c) ADD A,A d)}ADD AC,DH

6-2 On the second page of 8-BIT ARITHMETIC AND LOGICAL
GROUP is a column titled symbolic operation,
explain the meaning of A <= A+r for the ADD A,r
instruction.

6-3 (a) Using the first page of the 8-BIT ARITHMETIC AND
LOGICAL GROUP find the opcocde for adding the memory
location (peointed to by HL) to the A register?
Using the second page of this same group locate the
row containing the symbolic operation for register

indirect.
(b) What is the symbolic operation?
(c) What 1is the mnemonic in the same row? Find
intersection with the column labled opcode.
(d) What is the opcode ?
{e) What is hexadecimal equivalent of 1900011872

6-4 Refer to the first page of the 8-BIT ARITHMETIC AND
LOGICAL instructions.
(a) What is the opcode for ADD A, (IX+4)?
{b) What is the significance of the +4?
{c) How does +4 show up in the hexadecimal codes DD
az

6-5 (a) Write the mnemonic (assembly language code) for
add 3 to the A register.
Write the mnemonic for adding -4 to A.

the

86

an

{b)
(c) The hexadecimal code for ADD A, 3 is C683. Can you

guess what the hex code for ADD A, -4 is?

6~6 If A contains 74 hexadecimal and B contains
hexadecimal will the instruction ADD A,B add a)

BF
a

negative number to a positive number b) two negative
numbers C) two positive numbers., What do you think the

rightmost bit would be called?

6~7 The add with carry instruction comes in all the same
flavors as the ADD command. Use the information in
Appendix C 8-BIT ARITHMETIC AND LOGIC GRQUP both pages
to answer the following guestions, Fill in the blank

entries, [] below.

123

Instruction object code
(hexadecimal)

ADC A,D [(a)]
ADC A, (IX+d) [(b) |
ADC A, (IX+4) { (c) 1
[(d) 1 FD 8E 25
[(e)] FD BE FD

(f) The mnemonic for add with carry is given as ADC
A,s (see second page of 8-bit ARITHMETIC AND
LOGICAL GROUP). What does the s mean?

Execute the first exercise (I) under example of
experments (of Experiment 2 of MPF-I Experiment
Manual). Fill in the chart shown in this section.

(a) What is acceomplished by the instructions

LD A, (1APBH)
ADD A,E
LD L,A

Show your answer by using a diagram.

{b) See Experiment 2 (II. 2) What is accomplished by
the instructions

LD A, (1AG1H)
ADC A,D
LD H,A

Again show your answer using a diagram.
(c) Will above code always give a correct result?

(d) Using another method add two 16 bit numbers.
The operands are in the locations 1A@8 and 1A@G1 as
before but the result (sum) is stored in HL.

A new instruction was used that reguires knowledge
of 16-bit arithmetic. Turn to Appendix C 16-BIT
ARITHMETIC. The second page of this section shows
the Mnemonic ADD HL,ss in the first row. The
Comments column shows ss to be any one of BC,DE,HL,
Sp. Thus ADD HL, ©DE is a legal instruction. The
Symbolic Operation column shows HL is added to ss
and the result is placed in HL. When ss is DE the
operation is HL <-~ HL+DE

(e} Load and execute exercise 2.

124

6-10 Add comments to each statement below
(a) LD B,4
(b) LD IX, 1lAGQH
(c) AND A
(d) LD A, (IX)
(e) ADC A, (IX+4)
(E) LD (IX+8),A
(g) INC IX
(h) DEC B

(i) Jp NZ,LOOP

(j) What two instructions could be replaced by

instruction?
(k) What is the replacement?

(1) Load and execute exercise 4.

6~11 Expand example 4 to add a 64 bit number.

Exnand example 4 to add a 128 bit number.

6-11b Perform 5. in Example of Experiments.

6-12 In example 3-1 convert all the numbers to base
ten decimal. Show your answers.

(a) [HEX [7F [AD [AaC [2E |
[DEC | | ! |

(b) Now check the results of the addition
7F+AD=? and subtraction 7F-AD=? Are the answers
correct?

{¢) In Example 3-2 what adjustments would have to

one

be made if the leftmost addition results in a carry?

{d) What is the significance of a set carry bit after
a subtract operation?
(e) How many borrows occured in Example 3-272

125

(a)

6-13

i1l in the names of operands in the boxes
below., Use Sum, Augend, Addend.

[]
+]

I

(b) Again enter the names of the operands in the

(c

(d)

boxes below. Use Subtrahend, Minuend, and
Difference.

L]
—[]
L 1

Study again the flowchart for addition. Note
that the decision box at the second step from
the end<:>, can cause a repeat of 5 steps.
Each repeat is called a pass. The page after
the flowchart shows what events occur on the
first pass. The diagram may be a little hard
to read at first. What is the first event?
Second event?

Third event?

Fourth event?

Fifth event?

The top part of the next page shows the events

of the second pass. The results of the third and
final pass are shown at the bottom of this page.
The complete program is shown at the end of this

section. Fill in the values of the registers.
carry flag and memory locations for each step.

126

INSTRUCTION REGISTERS FLAG

AB ({(IX) [(IY) . 4

ADD3 XOR A

LD B,3
ADDLP LD A, (IX)

ADC A, (IY)

LD (IX),A

INC IX

INC 1IY

DJNZ ADDLP

ADDLP LD A, (IX)
ADC A, (IY)
LD (IX),A

INC IX

INC 1Y

DJINZ ADDLP
ADDLP LD A, (IX)

ADC A, (IY)

LD (IX),A

INC IX

INC IY

DJNZ ADDLP

RET

6-14

Show the object code and location ceocunter in the
listing below. Assume the program-starts at
location 18@@H.

EXP3
LOC OBJ CODE M STMT SOURCE STATEMENT

ORG 1800H
7 LD B,3
8 XOR A
9 ADDLP LD A, {IX)
18 ADC A, (1Y)
11 LD (IX),A
12 INC IX
13 INC 1Y
14 DJINZ ADDLP
15 RST 38H

127

6-15

Tg execute the 3-BYTE ADDITION PROGRAM. You must
first have IX and IY point to the data. There are
two ways to do this, What are they?

6-16

7o perform the subtraction statement 14 was changed from ADC
A, (IY) to SBC A, (IY). (a). What was the code for ADC A,
(I¥)? (b). What is new code for SBC A, (I¥)? (c)}. Why is
the third byte of each command zero?

{a) In adjusting to five byte data how many lines of the
program changed?
(b} What changes were made?

(a) When 1is it correct to call the rightmost bit of the
flag register a carry flag?

(b) When is it correct to call the rightmost bit a borrow
flag?

(c) Read and perform Experiment 3-2 in Experiment 3 of the
MPF-I Experiment Manual. you can use both ADD A, (nn)
and ADC A, (nn).

6-19
(a) What is the parity of the bytes given below?
9110 1199
$180 2008
111 1111
plog 0681

(b) In the bytes below what would be the setting (state) of
the parity bit (7) to have even parity?
9116 1100
9100 0008
#111 1111
2169 #0991

6-20

Example Experiments of Experiment 4 (MPF-1 Experiment
Manual)

Exercise 1 Follow the instructions--Before executing
the program add comments to each instruction.

128

6-21 Label the order of the actions in the diagram

below

Main Program

6-22

M~ Subroutine 1
CALL | ——>
1
- CALL
’ 2
CQLL Subroutine 2
RET
CALL RET
2

{2) Explain this program statement by statement. Note
after shifting left four bits with method shown below
could result in the loss of data if the original
number is greater than 15 decimal.

Ex. | [1166]

(L1p¢]oppo|

| [1111]
[1111]ne 0 6]
| e o6 o)

[0 06 ¢afoooa)

129

number is 12 (decimal)

shifting gives no
data lost

number is 15 (decimal)
no data lost

number is 16 (decimal)
data lost, bit was

shifted out of the
register by adding

6-23

Find the ROTATE AND SHIFT GROUP in Appendix C in the MPF=~I
User's Manual., On the second page of this group find the

column labelled Symbolic Operation.

Except for the last two operations RLD & RRD , all of the

instructions operate on 8 bits and the carry flag, CY.
(a) What 1is the real difference between instructi

ons

starting with R (rotate) and starting with § (8hift)?

(b) Again, look at the diagrams for the rotate inst
tions, the bit shifted out of the byte is transfe
into the carry tlag and in some cases the bit is
transferred to the other end of the byte. How
these two cases separated by the assembler?

(c) Draw the symbolic operation for
RLA
RRA
RLCA
RRCA
6-24

II. Sample Experiments

{a) 1. Draw a diagram showing how the shift is performed

ruc-—
rred
also

are

(b) 4. Comment on each line of the program show how 1t works

6+-25

Perform the exercises given in Illustrations of Experiments.

6-26

Study the sample program EX8P1 LISTING

STATEMENTS 15 through 20 clear the BCD area. This is the

area where the result will be developed.

The contents of a particular register is loaded into al
BCD bytes.

(a) What register is used?

(b) What statement zeros out A?

130

1 the

(c)

(d)

(e)

What statement puts zeros into the BCD bytes (one for
each loop)?

What are the statement numbers in the loop that zeros
out the BCD bytes?

How mary passes will be made ?

(f) At what statement was B loaded with the number of bytes
to zero out ?

(g) STATEMENTS 22 to 27 computes the number of shifts to be
made.

If the binary number consists of 3 bytes how many shifts
into the carry flag must be made ?

(h) Assume D = 3 number of binary bytes. Statement 23 will
load this value into the A register. What do statements
24 to 26 do ?

(i) What is happening at statement 27 ?

STATEMENTS 36 to 35 will shift all the binary bytes one
to the 1left and leave the carry flag with the highest
order bit.

(j) What is the address of the first byte to be shifted 2

(k) What register pair points to memory when the ROTATE LEFT
{RL) command is executed ?

(1) How 1is the starting addres for each series of shifts
loaded into HL ?

(m) What statement numbers are contained in the _loop Fha?
adjusts all the BCD bytes each time a new binary bit is
available in the carry flag ?

(n) How many passes will be made through the loop ?

(0) What do statements 47 and 48 decide ?

6-27

Example Experiments

Perform experiments

6-28

{a)

(b)

convert the decimal number 9 to binary. Show the
process.

Convert the decimal number 492 to binary show the
process.

131

6-29

The BCD~to~Binary conversion program given in section 3 will
now be analyzed.

STATEMENTS 11 TO 17 divide the BCD number by 2. The result
must be tested for adjustment of bits 7 and 3.

{(a) How many bytes will be rotated to the right by one place
?

(b) STATEMENTS 18 to 24 check the two potentially incorrect
3;;555 bit 7 being tested in statement 19 ?

(c) What is statement 21 doing ?

(d) What is the other bit position to be tested ?

(e} Statement 24 corrects what ?

(f) Discuss Statements 26 to 29 ?

{g) The STATEMENTS 32 to 35 rotate the bit that was shifted
out of the BCD numbers into the high order byte and
rotate all the binary bytes to the right. How many

binary are there ?

(h) Discuss STATEMENTS 37 to 38.

G-39

Now that you have read how to hand calculate square root,
solve the problems below.

Compute the square root of 16 (decimal). Show the results
of each text, subtraction, and shift.

132

Answers to Exercises

6~1 [b) Operands are in the wrong order for the assembler
correct instruction is ADD A,E
c) Can't add the 16-bit register pair HL to the 8
bit register A answer must fit in an 8 bit byte.
e} can't pair A and C or D and H.]

6=2 [The value of r is added to the contents of the A
register. The result, sum, is put into A.]

6-3 a. [86]
b. [A<—— A+(HL)]
c. [ADD A, (HL)]
d. [1pegplla)
e. [86]

6-4 a.[DD86 the index instructions have an extended
opcode.]
b.[The memory location referenced will be four more
than the value of IX. For example if IX = 7000 then
memory location 7088 is referenced.]
c.[The B4 replaces the 4d.]

6-5 a.[ADD A,3}
b.[ADD A,-4]
c. [C6FC]

6-6 [a) 74 hexadecimal=p11101P8min binary so A is a
positive number. The leftmost bit is zero. This is
called the most significant bit MSB. The number
in B BF hexadecimal = 10111111 is a negative
number, the MSB is 1.]

[The least significant bit LBS. It is also bit number 8.]

6-7 a.[8A]

b.[DD BE 4]

c.[DD 8E @4]

d.[ADC A, (IY+25H)]

e, [ADC A, (IY-3)]

f.[See Comments s is any of r,n,(HL),{IX+d), (IY+d).
Also under comments r is given as any of
B,C,D,E,H,L,A.]

133

6-8

Preset Value Result of Program Execution-®
Register Register Flag
D E HL Sign [Zero [P/V [Carry
SAH | ARH PINo Depends on when sampled
4611 | 77H _2@BD
ADD
Loc 03J CODE M STMT SOURCE STATEMENT
1840 1 ORG 18A0H
1860 7B 2 LD A,E
1801 82 3 ADD A,D
1842 6F [LD L,A
1803 3EQ8 5 LD A,
1845 CEQ9 6 AhC A,B
1807 67 7 LD H,A
1808 FF 8 RST 38R
6-9 af 1200
1
—
—
CARRY]

bl [1ne1
[1 »

+ []carry

H
]

c | No, if the values in 1A@0PH to 1A@AlH and DE
are large, the result (sum) will be 17 bits
in size.]

d(LD L, {1AQ@H)

LD H, (1AZ1H)
ADD ML,DE]

134

ADDL6BIT

LocC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1883 0H

1800 3A001A 2 LD A, (1A06H)

1813 83 3 ADD A,E

1804 6F 4 LD L,A

1885 3AG11A 5 LD A, (1AQ1H)

18p8 8A 6 ADC A,D

1879 67 7 LD H,A

180A FF 8 RST 38H
RESULTS

1AB1 1AGH DE HL

a0 81 3204 A3a5

0l 5B} 8763 p8e4 Zero flag set

a. [The number of passes through the loop 4 is loaded
into the B register.]}

b. [Load the base (starting) wvalue in the index
register IX.]

c. [Clear the carry flag.]

d. (Load the first operand into the A register.
(augend)]

e, [add the second operand to A; the result (sum) is in
A, A <~ (IX) + (IX + 4}]

f. (Store the current sum at IX +8.]

g. [advance IX to point to the next set of operands and
sum.]

h. [B <- B~1]

i. {1f the result of decrementing B is non-zero then
loop back to LOOP.]

1., LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 18@aH

1800 0604 2 LD B,4

1892 DD21@01A 3 LD IX,l1AG0H

1806 A7 4 AND A

1887 DD7EQ® 5 LODOP LD A, (IX)

180A DD8E@4 6 ADC A, (IX+4)

186D oD77@8 7 LD (IX+8),A

1812 DD23 8 INC IX

1812 a5 9 DEC B

1813 c2e718 10 JP NZ,LOOP

1816 FF 11 RST 38H
FOR ADD

1AG3H-1A0AAH 1A07H-1AB4H 1AGBH-1AABH FLAG REG

3B712345 8FFDAALQ CBBECDSS 42

FFFFFEFFF FFFFFFFF FFFFFFFF 43

135

6-11b

LD B,4
ADC A, [IX+4)
LD (IX+8),4

OLD

Lh B,4

ADC A, (IX+4)
LD (IX+8),A

FOR SUBTRACT

1A03H~1AM0H

8FFDAALD 3B712345
FFFFFFFF FFFFFFFF
LocC

1808
1800
1862
1806
1807
180A
186D
1810
1812
1813
1816

OBJ CODE M STMT SOURCE STATEMENT

Bhp4d
DD21@A1A
A7
DD7EBD
DD9ER4
DD77038
DD23

@5
c20718
FF

FOR ADD & DAA

1AA3H~1A@AH

12345678 87654321
35868794 44556699
Loc
1800 1
18080 n604 2

1342 DD210A1A 3

1806 A7 4

18p7 DD7EG0O 5

180A DDBEA4 6

180D 27 7

18pE DD7708 8

1811 DD23 9

1813 85 10

1814 czae718 11

1817 FF 12

PR WD UT D W

—

1AG7H~1A%4H

LOOP

1AQ7TH-1A@4H

Loop

B,8
A, (IX+8)

(IX+16),A]

D B,16

DC A, (IX+16)

1AABH~1AA8H
548C86CB
syeagaen

(IX+32),A)

SUB4B

1AQBH~1A@8H
99999999
87425493

ADD4BDA
OBJ CODE M STMT SOURCE STATEMENT

136

FLAG REG
42
42

18@8H
B,4
IX,1AG0H
A

A, (IX)
A, (IX+4)
(IX+8),A
IX

B
NZ,LOOP
38H

FLAG REG
42
42

18008
B, 4
IX,1A00H

A
A, (IX)
A, (IX+4)

(IX+8),A
IX

B

NZ, LOOP
3BH

6-1"a" [HEX]7F [AD [12C[2E |
1

b’ Yes]

¢ Tour bytes would have to be reserved for
the answer (not three). The carry would be
placed in the highest order byte of the

answer,
Carry
[[I |
Nligh order byte Low order byte

(Most significant digit) {Least significant byte)

dl AN borrow has occurred.]
el 2]

f-1ial [AUGEND]
+ [ADDEN]
(s])
bl [MINUEND]
~ [sueTianEnD]
[DIrFERence] |

c[L A,(IX) Load the accumulator with the
contents of the memory location pointed to
by the IX index register.]

[ADC A,(IY) Add to the accumulator the
contents of the memory location pointed to
by the IY index register,)

[LD (IX),A Store the accumulator away in the
memory location pointed to by the IX index
register.]

INC IX Advance by one the IX register.]

INC IY Advance by one the IY register.]

—_—

137

d "INSTRUCTION REGISTERS FLAG
A B (IX) (IY)

ADD3 XOR A 2 2 BD AC f
LD 8,3 ? 3 BD AC]

ADDLP LD A, (IX) BD 3 BD AC o
ADC A, (1Y) 69 3 BD AC 1
LD (IX),A 69 3 69 AC 1
INC 1% 69 3 7C AC 1
INC__IY 69 3 7C 65 1
DJNZ ADDLP 69 2 7C 65 1

ADDLP LD A, (IX) 7C 2 7C 65 1
ADC A, (1Y) E3 2 7C 65]
LD (IX),A E3 2 E3 65 g
INC 1IX E3 2 6A 65 2
INC 1Y E3 2 6A 43 P
DINZ ADDLP E3 1 6A 4B 2

ADDLP LD A, (IX) 6A 1 6A 4B @
ADC__A, (1Y) B5 1 6A 4B a
LD (IX),A B5 1 B5 4B [
INC__IX BS 1 ? 4B 0
INC 1Y B5 1 2 2 n
DJINZ ADDLP B5 1 ? 7 7
RET

6-14

EXP3

LOC OBJ CODE M STMT SOURCE STATEMENT

1809 ORG 18@0H

1886 4603 7 LD B,3

1802 AF £ XOR A

1893 DD7EGQ © ADDLP LD A, (IX)

1846 FDSEQD 10 ADC A, (IY)

1869 DD7787 11 LD (IX),A

18AC DD23 12 INC IX

184E FD23 13 INC 1Y

181@ 1@F1 11 DINZ ADDIP

1812 FF 15 RST 381

138

6~15 [One--Change the code. Between statements

(LD B8,3) and

LD IX,1900H
LD 1Y,1A80H

statement 9 (LD A,(IX) insert

Two~~Load IX and IY from the keyboard.
Press REG, I
Press REG, 1Y, 1, A, @, @

X, 1, 9, @, @

8

The test data must also be loaded by entering

ADDR, 1, 9,

ADDR, 1, A,

g, 8, DATA, B, D, +, 7, C, +,

@, @, DATA, A, C, +, 6, 5, +,

To run the table data--first set--replace
test data by

ADDR, 1, 9,
ADDR, 1, A,

f—1..al D BE 08]
b t'D 96 €9]

c! A displacement of zero was used--~in effect,
there is no displacement.] '

6-17al 1

6, #, DATA, 6, 5, +, 3, B, +,
¢, @, DATA, D, F, +, C, E, +,

]
bl Statement 8 became LD B,S5]

A,

f-1148(When addition or incrementation is performed.

It is not

flag when subtraction is performed.]
bl Only when subtraction is performed.]

C XOR
LT
ADD
LD
LD
ADD
LD
LD
ADD
LD

A
A, (1820H)
A, (1823H)
(182AH) ,A
A, (1821H)
A, (1824H)
(18274) ,A
A, (1822H)
A, (1825H)
(18284) ,A

139

incorrect to call this flag a carry

B]

6-1val Even]
{ odd]
[odd]
[Even]
b[Reset (clear)]

[

[Set (on)]

[Set (on)]

[Reset {(clear)]

[ORG 1B@@H ;Program code starts at 1884.
LD HL,19a¢tH ;The HL register pair will point
;to the memory location in which
;a byte is to be placed,
LD B,20H ;B is the loop counter which is
;used with DJINZ, 20 passes will
;be made through the loop.
LOOoP LD (HL),A ;The current value in A will
;be stored at the location
;pointed to by HL.
INC HL ;Advance the memory pointer so
;that the next sequential memory
;location can receive the contents

;of A,

DJINZ LOOP ;Decrement the loop counter B
;and return to LOOP if B is non
;2ero.

RST 38H ;Enter the monitor program.

Answers to Experimental results (1), (2), (3) under
exercise 1 of II. Example Experiments (Experiment 4,
MPF~I Experiment Manual)
(1) 1960H to 191FH are zeroced out. 19201 is unchanged.
{(2) Now locations 1908H to 191Fil contain 55t
1920H is unchanged.
(3) Locations 194fH to 19FFH contain A4H,
Remember loading zero in B and using DINZ for loop
control will give 256 passes. DJNZ will first
decrement the value in B then test #0H=1=FFH (255
decimal),

2. Trace this program in your mind--play computer
(Trace the program in Exercise 2. Nested loops
under II., Example Experiments of MPF~I Experiment
Manual).

Hesults:

{l) Memory locations
19A-19@F 1910-191F ... 19FEf~19EF 1Y9FP-19FF
an < NE Hr

Did you get the same results?

140

(2) Revised chanyes are

LD HL,1900H in place of LD HL,19FFH and
INC HL instead of DEC HL

Test your program.

3. Read MPF-I Experiment Manual, Experiment 4,
II. Example Experiments, Exercise 3. first.

Since DEC BC doesn't set flags, the JR NZ,LOOP
will be useless, Between DEC BC and JR NZ,LOOP
insert

LD R,B
OR C

If any bit is set, the OR command will reset the
zero flag indicating a non-zero result.

4. Read MPF-~I Experriment Manual, Experiment 4,
II. Example Experiments, Exercise 4, (1)

(1) Comment for each statement

[ORG 180@H ;Program begins at 180@H
LD HL,1B@3H ;First base address from which
;data will be transferred.
LD DE,1AR%H ;First destination address for
;jdata movement.

LOOP LD A, (HL) ;These two instructions move one
;byte
LD (DEZ),A ;From a source address pointed to

;by HL to a destination address
;pointed to by DE.

1808 h| [e—HL
1A00 2 le—DE
Cp OFFH ;After each byte is transferred,

;the A register will still contain
;a copy of the byte. Cowpare FF
;against the contents of the A
;register. If A contains zero,
;set the zero flag.
JR Z,EXIT ;1f the compare instruction
:found a zero in the A register,
sthen a jump to EXIT will be made.
INC HL ;Continue here if A was not egual
;to AFFH. Advanced the source
;pointer to prepare for the
;next move,

INC DE ;Advance the destination pointer.
JR LOOP ;Make another pass through the
;loop
EXIT RST 384 ;Transfer control to the monitor.

141

(2) Comment on each instruction

ORG 1808H ;jStart program code at 1880H
LOOP LD A, (HL) :The current contents of the
;memory location pointed to
;by HL is loaded into A.

NEG ;Gives a two's complement of A

LD (HL},A ;Return complement value of A
;Lo memory.

INC HL ;Advance memory pointer

AND A iClear the carry flag to get

1a correct result in the next
;subtraction.

$8C HL,DE ;If HL less than DE, then
;the zero flag is not set.

ADD HL,DE :Restore the data at HL to
;its original state.

JR NZ,LOOP ;If the result of the

;SBC HL,DE was non~zero (HL
;still less than DE}, then
stransfer control to LOOP.

6-21

Main Program

Subroutine 1
1

caLl | —m2
! 5

CALL Subroutine 2

6-22

ANSWER (1)

PUSH HL ES
PUSH DE DS
PUSH BC C5
POP HL El
POP BC Ccl

POP DE D1

1
2
3
4 L3OP1

5]
7 LOOPR2

e

10
11

12

13

(3) Change

6-23

afln shift instruction :
bit byte or the carry flag is not rotated ar

end. It will

b [The presence of a C
transfer both into t

the byte.]

QKRG
Le
LD
PUSH

Ln
ADD

BN
LD

INC

POP

DINZ

UALT

18 0H

b, 21U
ML, 1AGREH
BC

A, (L)

B, 4
AN

LHOop2
(HL) , A

HL
BC

LNaPrl

;Set location counter to zero.
;Loop 21 tinmes.
;First location to he shifterdd.

;have
swill
iloop

4 pl

shNumber of adds (shifts) is &,

;kach
slerft

BEC on
be a

stack because it
ltered by the inner

(LODP2) .
;Load rmenory byte to shifted

aces 1

add will shift value in A

ane p

nto A,

A

lace.

;Loop countrol--4 passes (loons).

jletu
imeino

rn sh
r'ye.

ifterd wvalue to

;Advance memory pointer.
;Relocated
ipreserverl
;statement 4.

;Have 21 numbers been shifted?
loop back to LOOPL.

P8Oy
;Yes.

Nuit,

statement 11 to read ADC

LD
Le
LD
L0
CALL

L, A2
nE, ALY
IX,1A70H
5,0

MADRD

be lost]

143

value of #{ that was
on the stack by

A, (L)

s the bit shift out of either the 8

ound to opposite

in the third position indigatees a
he carry flag and the opposite end of

c use MPF=-I panual page C-17

KLA cy 7 N
RRA 7 ¢ cy
RLCA Ccy 7 it
voen b
A-24
al
H L D E
{ [| []
fe———32 bit data
H LSB MSB L D E
SRA H CF RRL C5 RR/D RR/E

Note the carry flag has been drawn in several places
for convenience this is the same carry flag. 1

[MULTIPLY X 2

ORG 1816H
SLA E
RL D
RL L
RL H
RST 38H]
2. [ANSWER
ORG 1830H
LD B,5
LOOP2 PUSH BC
LD HL, 1A00H
LD B,4
AND A
LNOPL RL (HL)
INC HL
DINZ LOOP1
POP BC
DJINZ Loop2]

144

3. [ANSWER

QRG 1800H
LD B,4
LOOP2 PUSH BC
XOR A
LD HL, 1AABH
LD B,4
LOOP1 RLD (HL)
INC HL
DJINZ LOOP1
POP BC
DJINZ Loor 2]
ba. [
MPYS LD BC,80AH ; Load B with 8 thus shifting
; the value in A B times,
; Zero out C
LD H,C ; Zero out the H register
LD L,C ; Zero out the L register
M1 ADD HL,HL ; Shift the sum left one place
RLA ; Rotate the most significant
; bit of A into the carry flag
JR NC, M2 ; Test if carry is set means
; that an add should occur
ADD HL,DE ; Add if carry set
ADC A,C ; Put bit shifted out of A back
; into opposite end of A
M2 DINZ M1 ; Are there more bits to be
. : tested in A
RST 38H ; Return to the monitor

This program is different from the theoretical background
problem in only one respect. The theoretical background
problem is an 8 bit by 8 bit multiplication and in this

example a 16 bit number is multiplied by an 8 bit number.

[I]

So done

145

II. Answer to II. 5 is in Answer to Experiment &

6~25 See answers in 6-24

=26
al a]
b [15 an exclusive OR of A will clear A and the carry flag.]
c | 18 1]
a1l 18 to 20 }
e [The number of passes equals the value in B]
£ [16 the D register contains the number of bytes in BCD area.] ;
g [24] B
h [Each statement doubles the value of A, The final result
is 8 * A =24 if D = 3]
i [Register C will hold the number of shifts.]
J t1ageu)
k [The HL register pair —- see statement 33]
1 [Statement 17 loads H with 1A the value of H never changes. i
Statement 31 zeros out the L register]
In summary:
1A02 1A01 1700 -

o .43]
(3) (2) (1)

\\\\5\\?___-“___—__——/f/ H L "

The numbers (1)}, (2), (3) are pass numbers.

m STATEMENTS 37 to 45 double the number; add the carry
(obtained from shifting the binary number to be converted
and then decimally adjust all the BCD bytes.

n [49 to 45]

o [The B register controls the number of passes. B is loaded
with D which has the number of BCD bytes. 1}

[Statement 47 decrements the bit count and statement 48
decides whether all of the bits in the BCD number have been =
processed.,]

Trace the program again, it is a good practice.

146

(-8

NSt}

o

[\]

- 2

1

B ———1 1 L 1

256 128 64 32 16

1
4

- 2 ‘
4]
8

N b ——

256 + 128 + 64 + 16 + 4 + 2 = 492

147

al 5 —— statement 12 lcads the B register with 5 and the locop
at statements 15 to 17 is controlled by the DJNZ statement. |

b{ A shift of a bit into this position doesn't divide the
higher digit by 2. The digit is worth 8¢ not 58. | i

¢ | Applying a correction of 34. 82 - 38 = 5¢ this statement
is only executed if bit 7 is-set.])

g’ Bit 3. Statement 22 a shift of a bit into this position L
provides an 8 instead of a 5.]

el Bit position 3. B - 3 = 5]

f ([The conected byte is stored away statement 26, HL is | o
decrement to point to the next lower byte statement 27.

The contents of the carry flag are restored for use in the
next potential shift statement 28, Now the valie in B is
tested to'determine if more bytes are to be shifted.

-Statement:29 , a total of 5 bytes are to be processed on e
each pass. See statement 12

g9 (4. See statement 32. Statement 35 forces a loop back to
SHR4 if all the shifts have not occurred.] L

h { These statements are responsible for determing if all the
BC bits have shifted right., Statement 9 sets the count to
32 and statement 37 decrements the by one. Statement 38 -
tests count. If register C -- the shift count register -
1S non zero, a jump back to DBLP is executed.]

6-30

Y

0061 0008 = 16 (decimal) '
0168 0290

R P

I have used a carat, A , to show the end of the original
value.] o

RP is greater than XY so in the hand method you avoid

subtraction. The computer has to subtract to determine

the relationship between RP and XY. 1If RP is greater

than XY restore the original result. Shift XY two =
places to the left. Do not change RP,

X Y marks the end of

[01 o0 e, 0@] the original value

[j Ty
R P

148

Now RP equals XY so subtract R P from XY, Shift R one
place to the left and set the least significant bit
(rightmost bit) of R. Shift XY two places to the left.

C : an a0 e; 00 |
[1ol]

R P

RP is greater than XY; Shift XY left two places, shift
R left one place.

X Y

[00 0@ A@ @c |

C 10 |61]
R P

RP is greater than XY; Shift XY left two places, shift
R left one place.

X Y

los 60 oo 6p [po ee aa oo |

I 1 98 1 |
R P

These were 8 bits in the original number (in Y).

Four left shifts, 2 places each time, completes the
processing. The answer is in R, 188 (binary) = 4 (decimal),
which is the square root of 16 (decimal}).

149

EXPERIMENTS

Experiment 2

Answer to 1 under II, Example of Experiments in the
MPF~I Experiment Manual, Experiment 2--Basic Applications
of Arithmetic and Logic Operation Instructions,

LocC OBJ CODE M STMT SOURCE STATEMENT

180a 1 ORG 1800H
1800 7B 2 LD A,E
1891 B2 3 ADD A,D
1802 6F 4 Lp L,A
1803 3E@D 5 LD A,
1865 CEA@ 6 ADC Al
1897 67 7 LD H,A
1808 FF 8 RST 38H

Ansers to 2. under II. Example of Experiments of
Experiment 2 of the MPF-I1 Experiment Manual.

ADDL6BIT
Laoc OBJ CODE M STMT SQURCE STATEMENT

1809 1 ORG 180¢@H
1890 3A0B1A 2 LD A, (1AQOH)
1863 83 3 ADD A E
1804 6F 4 LD L,A

1885 3A011A 5 LD A, (1AQLH)
1808 8A 6 ADC A,D
1849 67 7 LD H,A
180A FF 8 RST 38H

RESULTS

1A01 1A09 DE HL

234} fl AR04 2865

21 91 8783 @884 Zero flag set

3. Change ADC A, (IX+4) to SBC A, (IX+4)

150

ADD4R

LoC 0BJ CODE M STMT SOURCE STATEMENT
1801A 1 ORG
1800 2504 2 LD
1802 DD21G@1A 3 LD
1806 A7 4 AND
18a7 DD7EBH 5 LOOP LD
180A DDS8EMA4 [ADC
188D DD7708 7 LD
1818 DD23 8 INC
1812 @5 9 DEC
1813 c2@718 19 JP
1816 FF 11 R5T

FOR ADD

1AG3H-1ABBH 1AA7H-1AB4H 1AQBH-1A@8H

3B712345 8FFDAALD CB6ECDSS

FFFFFFFF FFFFFFFF FFFFFFFE
5. FOR SUBTRACT

suB4e

LOC OBJ CODE M STMT SOURCE STATEMENT
lsne 1 ORG
1890 Bans 2 LD
1802 DD21AB1A 3 LD
1806 A7 4 AND
1867 DD7EGS 5 LOOP LD
180A DD9EM4 6 SBC
180D DD7798 7 LD
1810 DD23 8 INC
1812 B85 9 DEC
1813 c26713 1a Jp
1816 FF 11 RST
1AQ3H-1A00H 1A@7H-1A04H 1APBH-1AQ8H

8FFDAALG 38712345 548C86CB

FFFFFFFF FFFFFFFF asnsepan

151

18604
B,4
IX,1AE0H
A

A, (IX)
A, (IX+4)
(IX+8),A
IX

B
NZ,LOOP
38H

FLAG REG
42
43

1888H
B,4

IX, 1AG0H
A

A, (IX)
A, (Ix+4)
(IX+8),A
1x

B

NZ ,LOOP
38H

FLAG REG
42
42

FOR ADD & DAA

ADD4BDA
LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 18041

18006 p6nN4 2 LD B,4

1842 DD21@81A 3 LD IX,1A00H

1806 A7 4 AND A

18n7 DD7EBA 5 LOooOP LD A, (IX)

188A DDBER4 6 ADC A, (IX+4)

180D 27 7 DAA

180E DD7788 8 LD (IX+8) ,A

1811 DD23 9 INC IX

1813 s 10 DEC B

1814 c2p718 11 JP NZ ,LOOP

1817 FF 12 RST 38H

1A@3H~1AQAH 1ACT7H~1A04H 1APBH-1AD8H FLAG REG
12345678 87654321 99999999 42
35868794 44556699 81425493 42

Experiment 3

Answer to 2., under Student Exercises: of Experiment 3,
in the MPF-I Experiment Manual.

LoC OBJ CODE M STMT SOURCE STATEMENT

1808 1 ORG 186G0H
18p0 9683 2 LD B,3
1862 AF 3 XOR A
1863 DD7E®2 4 ADDLP LD A, (IX)
1806 FDBE@D 5 ADC A, (IY)
1869 DD77d¢6 6 LD (IX) A
18aC DN23 7 INC IX
18¢E FD23 8 INC Iy
1810 1eFl 9 DINZ ADDLP
1812 FF 16 RST 38H
Augend Addend Answer Flags
19@2-19003 1AB2-1A00 1902-1960

793865H ABCEDFH 25p744H 31

#8954 3H ABl236H AGATT79H A8

954717H @83390H 957AATH 8@

152

3.
LOC 0OBJ CODE M STMT SOURCE STATEMENT

1879 1 ORG 1860H
1808 AF 2 XO0R A

1881 603 3 LD B,3
1803 DD7EQQ 4 SUBLP LD A, (IX)
1806 FDY9ENQ@ 5 SBC A, (1Y)
1869 DD7709 6 LD (IX),A
186C DD23 7 INC IX
180E FD23 8 INC IY
1811 18F1 9 DINZ SuUBLP
1812 FF lg RST 38H
Minuend Subtrahend Answer Flags
1902-1900 1AP2-1A00 1962-1900

683147H 3367@0H 34CA47H 22

5935ABH 5877FFH B@BDACH 42

#49677H F65B79H AE3AFEH 1B

Experiment 4

Answer to Experiment 4, MPF-I Experiment Manual
1.
EXP4
LoC OBJ CODE- M STMT SOQURCE STATEMENT

1800 1 ORG 1890H
1866 210818 2 LD HL,1908H
1863 0620 3 LD B, 28H
18085 77 4 LOOP LD (HL) ,A
1806 23 5 INC HL
1807 10FC 6 DJINZ LOOP
1809 FF 7 RST 38H
2.

EXP401

LocC OBJ CODE M STMT SQURCE STATEMENT

1864 1 ORG 1808H
1860 21FF19 2 LD HL,19FFH
1883 BEGF 3 LD C,8FH
1885 g61@ 4 LOOP2 LD B,18H
1347 71 5 LOOP1 LD (HL} ,C
18e8 2B 6 DEC HL

1889 16FC 7 DINZ LOOP1
180B an 8 DEC o

186C Cc2¢518 9 Jp NZ ,LOOP2
18@F FF la RST 38H

153

LoC

1800
1800
1883
18d6
lge8
1809
180A
189B
l18acC

LOC

1800
1860
1883
1846
1807
18098
180A
184C
180D
180E
1819

LOC

18060
1800
1801
1883
1884
1885
1806
1808
1889

OBJ CODE M STMT

glsaenl
218018
36AA
23

)]

78

B7
20F8

WAV S W N

0BJ CODE M STMT

2l6ée1B

0BJ CODE M STMT

7E
ED44
77
23
A7
ED52

OO~ UL W

20F5

EXP4B2
SOURCE STATEMENT

LOOP

EXP403
SOURCE STATEMENT

LOOP

EXIT

EXPAR4
SOURCE STATEMENT

LOOP

154

RST

ORG
LD
NEG
LD
INC
AND
SBC
ADC
JR

180@H
BC,9180H
HL,1880H
(HL) , DAAH
HL

BC

A,B

A

NZ ,LOOP

18080aH
HL, 1B&@H
DE, 1A@@H
A, (HL)
(DE) ,A
AFFH
Z,EXIT
HL

DE

LOOP

38H

186@H
A, (HL)

(HL) ,A
HL

A

HL,DE
HL,DE
NZ,LOOP

Experiment 5

I
1

2
3
4

5

6
7

8
9

1d
11
12

13

. (2)

LOOP1

LOOP2

ORG 1800H ;Set location counter to zero.
LD B,21H ;Loop 21 times.

LD HL,1Ap@H ;First location to be shifted.
PUSH BC ;Save BC on stack because it

;will be altered by the
;loop (LOOP2).

LD A, (HL) ;Load memory byte to shifted

;4 places into A.
LD B,4" ;Number of adds (shifts)
ADD A,A ;Each add will shift value
:left one place.

DIJNZ LOOP2 ;Loop control-—4 passes (loops).
LD (HL) ,A ;Return shifted value
;memory.
INC HL ;Advance memory pointer.
POP BC ;Relocated value of BC that was

;preserved on the stack hy

;statement 4.

DINZ LOOP1 ;Have 21 nunbers been shifted?

;No, loop back to LOOPI.
HALT ;Yes., Quit.

(3) Change statement 11 to read ADC A, (HL)

(4) For

ADC
SBC

For

LD HL, 1AGAH
LD DE, 1AB8H
LD IX,1A00H
LD B,8

CALL MADD

subtraction, change

A, (HL) to
A, (HL)

multi-byte binary addition/subtraction,

delete the DAA command at statement,

155

{5) Subroutine to complement HL

HLCOMP LD A,H
NEG
LD H,A
LD A,L
NEG
LD L,A
Subroutine to complement IX and IY
IXCOMP PUSH IX
POP HL
CALL HLCOMP
PUSH HL
POP IX
IYCOMP PUSH IY
POP HL
CALL HLCOMP
PUSH HL
POP IX

The method will he
then add DE to IY.

(h) to 2's complement DE,

PUSH
POP
CALL
PUSH
POP
ADD

Experiment 6

II. Lxample Experiments:

5. This program is most easily solved by studying
the register assignments and flowchart in the
previous section on binary multiplication. The
only difference is the size of the multiplicand,

multiplier,

and answer

32 bits (4 bytes)
X 32 bits (A bytes)

64 bits (8 bytes)

(product) .
Multiplicand
Multiplier

Product

156

The essential steps are

1) Clear the product area 8 bytes.

2} Initialize the shift counter - 32 shifts of
the multiplicand, multiplier, and product.

3) Save the shift counter by PUSHing it onto
the stack.

4) Shift the product area left cone bit.

5) Shift the multiplier left into carrry.

6) Test the carry flag. If set fall through
to 7)., If zero, transfer to step 8).

7) Add the multiplicand to the product,

8) POP the shift counter into BC,

9) Test B--Done? Yes~-Exit step 18)
No~-step 3)

19) Return to the monitor.

;CLEAR THE PRODUCT AREA

LD HL,1A@8H;First location
LD B,8B ;Byte count
LD A,D
CLEAR LD (HL) , 9 ; (HL)<~D
INC HL ;Advance to next memory
;location.
DJINZ CLEAR :More locations to be

;cleared.
; INITIALIZE SHIFT COUNTER
LD B,32 ;Total number of shifts.
SHETAGANPUSH BC ;Save shift count

;SHIFT PRODUCT AREA

LD B,8 ;Shift the product (8 bytes)
XOR A ;Clear carry
LD HL,1AG8H;First location
PRODSHFTRL {HL) ;Shift
INC HL ;Advance to next memory
:location
DINZ PRODSHFT;More bytes to shift?

;SHIFT THE MULTIPLIER

LD B,4 ;Total number of shifts
; (4 bytes}.
LD HL,l1A@4H;First location
PLYERSHFRL (1L) ;Shift
INC 1L ;Advance to next memory
ilocation
DJINZ PLYERSHF;More bytes to shift?

157

;DO WE ADD?

JpP NC,SHIFT32;Jump if no carry

; (no add).
; ADD

LD B,4 ;Add 4 bytes

XOR A ;Clear carry

LD HL,1AP@H;Start of multiplicand

LD IX,1AR8H;Start of product

FIRSTADDLD A, (HL) ;Load multiplicand

ADC A, (IX) ;Add product

INC HL ;Advance multiplicand
;pointer

INC IX ;Advance product pointer

DJINZ FIRSTADD;More bytes to be added.

:ADD CARRIES IN UPPER PART OF PRODUCT

LD B,4
SECNDADDLD A, 0

ADC A, (IX)

L> (IX),A

NINZ SECNDADD

.CHECK SHIFT COUNTER

SHIFT32 POP BC ;Restore BC

DJINZ SHFTAGAN;More shifts?

RST AFFH

The answer given above is one solution. You may
wish to use more registers and improve the code.

Experiment 7

II. 2.
[Dividend Divisor Answer Remainders Check
B68GH 00206 9434 pBB6 [0’}
FFFF 29BS 5555 poon 10
5A48 0142 n947 BOFA a0

BH 2142 0000 gen 44
1234H @H FFFF 1234 bC

158

3.

[The key to modifying the division routine in part
one is to realized that the dividend is being
shifted bit by bit cut of BC. Also that the

result is being shifted bit by bit in DE. This
problem requests a 32 bit result, a 16 bit register
and 16 bit fractional result. The division is
still a 16 bit number (division) divided into a

16 bit number (dividend). Make the following
changes:

Statement 12 change LD A,16 TO
LD A,32

After statement 12 add

LD IX,1AQ0H
Replace statements 15 to 17 with

RL (IX)

RL (IX+1)

RL (IX+2)

RL (IX+3)
The dividend is in locations 1AQ@@ and 1A@1.
The integer result will be locations 1AP® and
1A@81. The 16 bit fractional result will be in
locations 1AB2 and 1A@3. The jump relative

instruction at statement 27 will have to be
adjusted to jump the proper distance to DVA.

4.
LD D, {1AB1H)

LD E, (LA@QH)
LD B, (1A04H)
LD C, (1AB5H)
CALL DIVI1é6

LD (1A@G1H) ,H

LD (lA@@H) ,L

159

S.
;CLEAR LOCATIONS 1AQ4-1AQ07

XOR A

LD B,4

LD HL,1AQ4H
CLEAR LD (HL) , A

INC HL

DINZ CLEAR

;SET IX TO POINT TO DIVIDEND

LD IX,1AP3H

;SET AND PRESERVE SHIFT COUNT

LD A,32
PUSH AF

; ROTATE DIVIDEND INTO TEST AREA
ROTATE RESULT BITS INTO LEAST SIGNIFICANT BIT
OF DIVIDEND AREA

pva RL (IX)
RL (IX+1)
RL (IX+2)
RL (IX+3)

;SHIFT TEST VALUE

LD B,4

LD IY,1AR4H
SHIFTTSTRL (IY)

INC Iy

DINZ SHIFTTST

;i SUBTKACT TiHE DIVISOR

XOR A

LD B,4

LD HL,1A20H

LD IY,1AB4H
DIVISOR LD A, (1Y)

sBC A, (HL)

INC HL

IneC Iy

DJINZ DIVISOR

;WAS THE DIVISOR LARGER THAN THE TEST VALUE?
NO. JUMP TO DV1

JR NC, bVl

160

;:DIVISOR LARGE
BACK IN

RESTORE ADC

DJINZ

;ADJUST CARRY

DV1 CCF

; TEST FOR ALL

POP
DEC
JR

You might wish t
Experiment 8

2.
Hexadecimal

A200H
FFFFH
18A63H
SA48347FH
plpgpoocoaen
gaARNARGeA2AB00R
FFFFFFFFFFFFFFFF
3.

LD

LD

PUSH

LD

CALL

LD

LD

POP

R THAN TEST VALUE. ADD DIVISOR

A

B,4

HL,1AZ2@H;Divisor is at locations
;1A20-1A23H

IY,lAQ4H

A, (IY)

A, (HL)

HL

1Y

RESTORE

FLAG

32 SHIFTS

AF
A
NZ ,DV@

o add comments to each statement,

BCD

512

65535

98304

1514681471
4294967296
$9223372036854775808
184467446737049551615

(18@lH),D
(18006H) ,E
DE

DE,92082H
BINBCD

H, (1809H)
L, (180A8H)
DE

161

LD A,E

ADD A,A *2

ADD A,A *4

ADD AyA *8

SUB A,E 8-1=*7
4.
A second way

LD A,E

ADD A,A *2

LD (1AQ@0H) ,A

ADD AL,A *4

ADD A, (1ABPH) *4+*2=%6

ADD A,E *G+1=%7

Experiment 9

3.

The method shown below for BCD to binary conversion
is a brute force method. Your solution may be
different and shorter. The BCD number is contained
in the HL register pair. The binary equivalent will
be contained in the DE register pair. The B register
is used as a loop count (16).

H L D E
BCD number [Binary number]

162

1
18080 2 ORG 180 @H
3
4 ;CLEAR BINARY AREA AND CARRY FLAG
5
1806 1600 6 LD D,
1862 1EQ@ 7 LD E,0
1874 AF 8 XOR A
9
1@ ;SET LOOP COUNT (SHIFTS)
11
1885 B610 12 LD B,16
13
14 ;SHIFT H,L,D,E TOGETHER ONE BIT
TO THE RIGHT
15
1887 CBIC 16 SHIFT RR H
1889 CB1D 17 RR L
180B CBlA 18 RR D
184D CB1B 19 RR E
20
21 ;ADJUST REGISTER H
22
180F 7C 23 LD A,H
1818 CB7F 24 BIT 7,A
1812 2892 25 JR Z,COR1
1814 D630 26 SUB 3pH
1816 CBSF 27 CORl BIT 3,A
1818 2802 28 JR Z,COR2
181A D683 29 SUB 3
181C 67 3¢ COR2 LD H,A
31
32 ;ADJUST REGISTER L
33
181D 7D 34 LD A,L
181E CB7F 35 BIT 7,A
1828 2802 36 JR Z,COR3
1822 D630 37 SUB 36H
1824 CBSF 33 COR3 BIT 3,A
1826 2882 39 JR Z,COR4
1828 D6#3 40 SUB 3
182a 6F 41 COR4 LD L,A
42
43 ;MORE SHIFTING? YES — JUMP BACK
TO SHIFT
41
1828 1@DA 45 DINZ SHIFT
45
47 ;NO - SAVE DE AT 1A46-1A41
48
182D 21401A 19 LD HL,1A40H
1830 73 58 LD (ML) ,E
1831 23 51 INC HL
1832 72 52 LD (HL) ,D
1833 FF 53 RST 384

163

CCCCCCC

The Monitor

2 SN
éﬁrﬁhxﬁ?&ﬂ.ﬁﬁ. - -

Introduction

Vo "
The purpose of a monitof is to Silow the user to interface
with the computer with a minimum of effort. At power up,

the microprocessor monitor has to perform some
initialization tasks—-—-e.g.,check for 1location of the RAM
memory, display uPF-I on the screen. The monitor then

continously scans the keyboard, checking for a pressed key.
If you press the key labeled PC, the monitor responds by
accessing a routine labeled KPC (Key Program Counter). This
routine will perform the series of tasks vyou would expect
when pressing PC. The monitor has provided a human
interface to the computer.

WARNING

The monitor represent 2K of fairly advanced code. The
explanation below is written for users who want an in-depth
view of software. At times, you will have to struggle to
understand the routines. Also answers are not provided to
all the exercises. You should discuss your answers with
associates or your instruction.

167

7 « 1 Major Divisions of the Monitor

Refer to the book MPF-I Monitor Program Source Listing. The
listing is conmposed of two parts. The first part 1is the
code. The c¢ode starts with statement 1 and ends at
statement 2659. T[ind statement 2659 then turn ta the next
page. At the top of this page is the title Cross Reference.
Thie cross reference 1listing 1is the second part of the
listing. Look under Sympol for KPC. You sould see

SYMBOL VAL r DEFN REFS

KFC f1C2 727 2434 243% 2435 2436

The column DEFM indicates (defines) at which line number the
label (symbol) KPC is defined. VFind line 727. The label
KPC is on this line. The <c¢olon ":" forces KPC to be a
label. KPC is a label for the code that follows. The code
starts on line 731. Between line 731 and KPC are twg
comment lines and a blank line. The current value of the
location counter for line 731 1is given in the leftmost
column, The value 1is @AlC2. Look again at the cross
reference listing under KPC. The column labeled VAL (value)
contains #1C2. VAL is the first address of the routine KPC.

The REFS (reference) area tells the programmer all the
statements that refer to KPC. The first reference 1is on
line 2434, Find this line. Yes, KPC is referred to

2434 KFUN DEFW KPC

DF" (define a word -2 bytes)-— tells the assembler to

r. stve space for two bytes and put the address of KPC in
these bytes.

e will Jose the cross reference list again.

-

7.2

The
ite

1)

2)

3)

4)

The Code

first part of the moniter listing contains four major

ms:

The start-up code.

The routines which interrupt and respond to
a key press.

Special entry points, e.g., the interrupt INTR
entry.

Tables

169

AN OVERVIEW OF THE SEQUENCE OF ACTIONS
AFTER THE POWER IS APPLIED

CALL
RAMCHK

000P-0014 DELAY
PROCESSING UNTIL
MPF-I IS STABLE
PROGP*M THE 8255

"o THIS
A POWERUF

YES

INI:

|

3C1-3C9
SCAN1:624-664
3CC-3E4 DISPLAY
| MPF-1

0a17-881A
FIND LOWEST
RAM ADDRESS

l

S5F6-5FD
FIND LOWEST
RAM ADDRESS
RAMCHK

A31D-G@26
SET RAM ADDRESS

SKIP BREAK ROUTINE

8032-0835
TURN OFF MASKABLE
INTERRUPT

SKIP BREAK ROUTINE

#054-0062
INITIALIZE USER'S
STACK POINTER AND
INTERNAL MONITOR
FLAGS

SKIP NM1 (NON-

MASKABLE INTERRUPT

AREA

2BDo-@BDB

CHECK FOR LEGAL
USER'S STACK
ADDRESS

USER'S STACK
ADDRESS LECAL

DO NOT DISPLAY
USED PC

243B-#439 MEMDF2
SET UP USER'S
PC FOR DISPLAY

:

171

@ODE-g0EL
INITIALIZE
SYSTEM STACK

5FE-623

UNTIL A KEY
IS PRESSED

SCAN THE KEYBOARD

KEY PRESSED

GRE]-
CALL RERP

6CB-6DY
SOUND BFEP

172

WIE9-NPEB
KEY IN RANGE
ge—-AFH

YES A HEXADECIMAL
HEXADECIMAL KEY XEY WAS PRESSED

#111-118 KHEX
P3BA-F3IBA BRANCH

[
JUMP TO ROUTINE

YES
SUBFUNCTION KEYS

KEY IN RANGE
18-17H

KEY IS ONE OF
THE FOLLOWING:
+,-,G0,STEP,DATA,
SBR, INS,DEL

$3BB—H3BA41
BRANCH

JUMP TO ROUTINE

P@FC- 10E
KEY I RANGE
18H-1 F

YES
FUNCTTON KEYS

p3BO-03BA KEY IS ONE OF

BRANCH THE FOLLOWING:
pC,ADDR,CBR,REG,
MOVE,RELA,WRTAPE,
RD TAPE

JUMP 10 ROUTINE

173

DETAILED EXPLANATION OF THE PRINCIPAL
MONITOR FUNCTIONS

Use the flowchart 7-1 while tracing the monitor code.

Locations pode-—-0003

Statements 109 & 1@1

When power is first applied to a circuit, the circuit should
be allowed to stablize, Some I/0 devices need a time delay
before they can function. There are two time delays in the
MPF-I. One time delay 1is in the hardware. The circuit
connected to the Reset (RST) pin will prevent the MPF-1I's
Z8% from immediately starting execution. The other delay is
provided by the two instructions at statements 10 and 101.
B is first loaded with zero, then the DINZ $ will decrement
the value of B, and as long as B is non-zero, a jump to self
(re—-execute the instruction) will occur.

171

=

Questions of Exercises

Exercise 7-1

How long is the delay at line 10672

Statements 106-107

These two statements program the 8255.

The 8255 <chip has two lines A@ and Al to tell it what
function 1is bheing selected. 1If AP and Al are high, then
the 8255 is being programmed. The instruction

OUT (P8255),A

sends the controls in the A register over 8 address lines AQ
to A7. P8255 1is equal to @3 (hexdecimal) or Q080 G011
(binary). The right two bits which are high connect to A8
and Al.

Before the contents of the

A register are output, it is
loaded with a pattern, namely

1] 08 106G 8 A Port C lower is output
N/
Port B is output

Port B is mode @

Port C upper is output

ort A is input

L _sSelect mode zero configuration for Port A

175

Mode zero means that the ports are used for input or output.
Each half of Port C is programmed separately. Thus, Port A
will accept input from the keyboard, the user key, and the
cassette. Port B is used to control individual segments in
a display. Port C is used to select a display, to scan the
keyboard, and for output to the cassette, tone, and LEDs
(light emitting diodes).

Statement 114 and 115

The output is to Port C of the 8255. This is Port @2 in
MPF-I. The data sent to the 8255 will prevent a break. Bit
6 is made high. This sets PC6 (Port C, bit 6) high. The
break circuitry is enabled by a low on Port C bit 6. The
data sent to 8255 will also set the gate of the transister
controlling the sound and the LED high.

Statement 116

The system stack pointer is set to an address in the RAM.

Exercise 7-2

wWhat is the top of the system stack?

Use the cross reference to answer the question.

Statement 121-123

Read t.e contents of the location POWERUP. If it is not
wgual to PWCODE, then CALL subroutine INI. The designer
assumed that on power up that the location PWCODE could not
e egqual to ASH-—-this is probably true.

176

Exercise 7-3
Using the cross reference list.
What is the address of POWERUP and INI?

What is the value in PWCODE?

Statement 1347-1368

The first pattern to be displayed will be all blanks. Look
at the six bytes starting at location @7A5-- all zeroces.
DEFB means define a byte. Register C will be used to make
the uPF-I pass through the code at statement 1363 to 1368
seven times.

Statements 1363 to 1365 call SCAN1l ten times with IX
register pointing to the same pattern. After the screen has
been blanked out for #.16 second it is time to set up a new
pattern. The next pattern is 5 leading blanks with a "u" in
rightmost position. Decrementing IX, statement 1366 will
give this pattern. Look at line 2536 to 2541. IX now
points to location 7A4. The loop control statements DEC C
and JR NZ,INI1l will decide whether to transfer <control to
statement 1363 1label 1INIl. Control will be transferred to
INI1l six times. At this point, the screen will read

MPF-~I

177

Statement 137¢ and 2382-2397

Load the PWCODE into A and then transfer control to INI3
(initialize code port 3). At INI3 statements 2382-2397 load
the powerup code (byte) into location POWERUP, sets the beep
frequency and duration, and returhs to INI4. At INI4
statement 1372, a code of @B66 is loaded inte HL. Then the
next instruction puts this code into location IMIAD.
Whenever a code of FF is executed, the MPF-I will transfer
control to location 38H (effectively a call to 38H). The
routine at location 38H will then direct the MPF-I to
transfer control to IM1AD, Before the MPF-I goes to the
code to establish, if a break point is in effect, the break
point address is set to @FFFFH. In the present MPF-I,
address @FFFFH does not exist. Read the comments at
statements 1329 to 1383. At statement 1387, a return is
made to location @014 statement 123.

Exercise 7-4

Change the key beep frequency by trying different values in
location 1FF1 statement 2657. Can You set the frequency so
low that you can't hear it? Can the frequency be set so
high that you cann't hear it?

Change the duration of key beep-by changing locations 1FF2
and 1FF3. The monitor value is 2F in 1FF2 and #8 in 1FF3.
Try larger values then smaller values. Try zero in 1FF2 and
1FF3. At least one value will cause you to loose control of
the Micro-Professor. How can you regain control?

178

Exercise 7-5
(OPTIONAL-ANSWERS NOT PROVIDED)

Try to explain the comments and code at statements 194 to
214. You may need to read additional reference material.,
Make a drawing. It will help.

Statement 123-14p and 21#3-2119

HL will point to location 10A8H and then we are off to the
subroutine RAMCHK at location S5Ff statement 2110. Does this
routine look familiar? It should. The code was explained
earlier. If location 10P0H is the start of available RAM,
then when RAMCHK is exited, the zero flag will be set. The
return is location 1D statement 131. At this statement, we
ask: Is the zero flag set? If yes, then transfer control to
PREPC location 21 statement 133. The pointer to the
begyinning of wuser RAM (USERPC) will be loaded with 18#@H.
If a non-zero value is returned, then user RAM is assumed to
start at 180@H. Statement 132 changes the value of the H
register to 18B. Before jumping to RESET1, register H is
loaded with zero. Now H and L are both zero.

Statement 177-184

The interrupt register and the interrupt control flip- flop
are not discussed in this manual. Consult the Z88 technical
reference manual.

Statement 248-263

Statement 249 takes a fixed value USERSTK (l1F9F) from ROM
and loads it into the HL register pair. Then the next
statement puts this value in USERSP. The contents of USERSP
will point to the current top of the user's stack.

179

Exercise 7-€

Wwhy is a pointer in RAM used to indicate the top of the
user's stack?

Statement 251 and 252

The statements at 251 and 252 clear the byte labeled TEST.
Bit vuero must be set at the beginning ol a new numeric
entry. Setting bit zero of TEST to zero will automatically
clear the data buffer when a hexadecimal key is pressed.
The service rcutines for hexadecimal key entry reference
routines are PRECL1 and PRECL2. (See statement 811-9€0).
PRECL]1 and PRECL2 test bit zero of TEST and preclears one
(PREC1) or two (PRECL2) bytes (statements 14¢2-1428).

Setting bit 7 instructs the monitor to ignore the current
key press and to send out a warning message. The. routine
IGNORE is called by keyboard routines which have discovered
an illegal key press.

A Case Study

You have pressed the set break point key SBR, and have
entered an 1illegal address. The keyboard monitor routine
will branch to routine KSBR (Key Set Break) statement 587
to 608. The KSBR routine uses RAMCHK to determine if your
breakpoint address is a RAM location (CALL RAMCHK). 1I1f the
address is not in RAM, a jump to JIGNORE is executed
(statement 1336). The routine IGNORE sets bit 7 as a
warning message. The RET instruction transfers control back
to the MAIN loop (statement 387). The next three
instructions executed are

JR MAIN
LD SP,SYSSTK
CALL SCAN

SCAN tests bit 7 of TEST (statement 2138-39). If bit 7 is
set, then the screen is blanked as warning of an illegal key
press.

180

Did you enjoy tracking the effects of the flags in TEST. We
got a little ahead of ourselves. The keyboard scanning
routine has not yet been explained, but its kind of nice to
get a preview. The actions of TEST may seem rather devious.

Nne routine calls anather routine which calls another
routine. Some nesting of routines is permitted in a small
monitor. In a larye scale operating system, the accessing

of nested routines must be carefully planned in advance Let
us now finish the code RESET2.

Statement 258 sets IX to point to the initial display
pattern MPF-I. When SCAN is called, IX is used as a display
pointer(read statements 2125 to 2128) A jump to SETSTO
avoids executing the code for a non-maskable interrupt.

181

Statement 353-373

Statements 36@-361 <clear the STATE. Read statements 459 to
474, you will gain some insight to the functions of the
keyboard routines. The MPF-I uses a software breakpoint. A
breakpoint 1is set by replacing the opcode of an instruction
with a restart instruction RST 28H. A RST 28H saves the
contents of the program counter—--the next instruction to be
executed--on the stack and then transfers control to the
break routine at location 28H (statement 143). The replaced
opcode Is saved away in location BRDA (Breakpoint Data
hddress). The location of the breakpoint is BRAD

(Breakpoint Address). Statement 362-363 will restore the
data at BRDA to location BRAD. Why is this done? During
power up statements 362 and 363 accomplish nothing because
the breakpouint address 1s a nunexistant area of RAM. After
power up, assume a program has been entered and a breakpoint
set., The program starts executing and the breakpoint

address is accessed. The program will halt. You now decide
to investigate several registers and then to return to the
monitor. Pressing MONI will transfer control to location
66H statement 266. The code at statement 266 to 351 |is
executed. At statement 351, a jump to BRRSTO statement 362
is performed. The breakpoint is removed. Thus by pressing
MONI, you can return to the monitor and remove the
breakpoint. Many monitors have this feature. The actions
of the CALL C,MEMDP2 at statement 371 will depend upon which
instruction sequence preceded this statement. If this is a
power up sequence, then statement 258 sets IX to point to
uPF-I and statement 360 cleared the carry flag. Control
will not be transferred to MEMDP2 and MPF-I will be
displayed. 1If the user's stack is not in RAM, then the code
at statements 328 to 335 will display ERR-SP. If the user
stack and the system stack use the same area (overlayed)
then the code at statements 341 to 347 will display sys-sp.
If no errors are detected after the MONI key is pressed,
then the routine MEMDP2 1is <called. MEMDP2 (statements
1451-1492): 1) updates the state register, 2) calls routine
ADDRDP to display the address of the program counter, 3)
calls routine DATADP to display the contents of the address
of the PC, 4) checks if the address to be displayed 1is a
breakpoint, and 5} finally returns to location @6DE
statement 38@.

182

Statement 375-390

After setting the system stack, a call to SCAN will return
the key code of the key pressed. The BEEP routine does the
obvious thing--it sets up the parameter for a time and calls
TONE to.get a sound. Perhaps not so obvious is the command
at statement 2411 JP KEYEXEC. wWhen this command ' is
executed, the A register contains the internal code of the
key pressed,. The routine KEYEXEC processes all keys except
RS, MONI, INTR, and USER KEY.

As igdicated earlier when a key function has completed, the
RET in the key .candling routine returns control to Statement
387 (JR MAIN) which then re-execute MAIN.

Statement: 392-457: KEYEXEC

KEYEXEC separates the internal codes of the keys into three
groups. This is done to simplify the branching to each
routine which process a. key function. Read statements 2419
to 2422 to understand the branching method. The routine
KHEX loads registers for use by the routine BRANCH. HL is
loaded with a base address. Assume the GO key was pressed.
The internal code for GO is 12, Since 12H is greater than
16H, statement 483 will not transfer control to KHEX.
Statement 428 will subtract 1@H, leaving the difference of 2
in a. 2 is 1less than 8§, thus control is transferred to
BRANCH--statement 1381. The object of BRANCH is to transfer
control to the routine which will service the pressed key.
A table has been designed to hold pointers (branch
addresses) to the correct routine. The table for KSUBFUN is
at statements 2424 to 2433. The function of BRANCH (in the
case of GO) 1is to add together the contents of the first
table address @1l1B (statement 2425) and the table entry for
KGO, PA (statement 2428), The address of the routine KGO is
123H (11BH + @AH = 123H). Study statements 13¢1 to 1334
carefully to see how register A and register pair HL
determine the Jjump address (statement 1333) by using the
tables beginning at 2424,

Read the comments at statements 2411 to 2422, and 1302 to
1310,

This completes the explanation of the monitor. The
interrupt system was not discussed.

183

Exercise 7-7

Tracing monitor code

Trace the actions of pressing a key from each of the three
groups given under KEYEXEC. Verify your answer by reading
the operations performed by the key in the User's Manual 3.1
Basic Operations.

If time permits, step through the code for all of the keys.

184

185

CHAPTER 8

How to Read a Schematic

When you read a schematic, you are looking at the
results of the hardware design. A set of a hardware and
software specifications are developed by a combined staff --
management, sales, software, and; of course, engineering.

When a microprocessor is composed of only a few chips,
then a single sheet can show all of the schematics. The
MPF-I contains 13 chips, a voltage regulator, displays, a
keyboard, and two 48-pin extension connectors. Four sheets
are required for the MPF-I schematics. Each sheet is
numbered e.g. "Sheet 2 of 4"

Sheet 1 of 4

The components on this sheet, are vital to the MPF-I_
microcomputer. Ul is the Z8@ CPU. U6, U7, and U8 are the
memory chips, ROM and RAM.

We will first consider the requirements of the Z8g CPU.

Voltage and Current

Most new CPUs use a single 5 volt voltage source. Chip
specifications will tell the user (designer}) the allowable
voltage variations. Turn to sheet 4 of 4, you will find the
voltage regulator. It is located in the upper right hand
part of the page.

What voltage variations are allowed intoc the wvoltage
regulator? (+7V to +24V) For the 7885 to work properly,
the input, I, must be higher than the output, O. The output
voltage is +5V.

189

The allowable input voltage range is given just to left
of Input. What is it? (+7V +24V)

A smooth (clean) voltage can be supplied by the
regulator, yet noise may appear on the voltage input to an
ic. Some of the noise comes from circuits switching on and
olf. Each component that can malfunction due to noise (or
sound spikes) must in some way be prevented from interacting
with power supply. The property of a small capacitor is to
allow high frequencies to pass through them. This action
will filter out much of the noise. A noise spike is really
a high freguency signal. Look immediately below the voltage
regulator circuit and vyou will observe a series of

i L 1
capacitors shown as T T

. These capacitors are typically used to filter out
noise. Some filtering takes place before the yoltage is
regulated. The input capacitor has a capacitance of 4.7 uf.
What is its part number? [C6]

Exercise

Look at vyour MPF-~I board and find Ci, C2....(drawing)
If you were to design your own power supply, how could you
learn about voltage regulators? Some manufacturers publish
data books with explanations (tutorials) on how to use their
components. An excellent book on voltage requlators is
Motorala's Voltage Regqgulator Handbook. The author--Henry
Wurgburg-~has a section on "Selecting a Linear I~ Voltage
Regulator”.

190

Clocking Requirements

The 280 CPU can be operated over a range of clock
frequencies.. ' The Z8f CPU in your MPF-I is certified by the
manufacturer to operate at a maximum rate of 2.5 MHz.
Designers sometimes specify a chip set allowing operation at
a particular maximum frequency and then drive the chips at a
lower frequency. There are two reasons for the lower
frequency. One reason 1is that the circuits will operate
more reliably. The other reason is that the <clock may be
performing another task requiring a specific frequency.
Your MPF-I clock could be used to control the frequency
(baud rate) of information sent and received in
communications,

The clock circuitry (on sheet 1 of 4) is in the upper
left hand corner (D-8). The base frequency of 3.58
megahertz is generated by a quartz crystal. .

Exercise

The drawing for a c¢rystal is two plates with the
rectangular crystal drawn between the plates. Draw the
crystal

[——|Dl——1.

The crystal has the property of oscillating at an exact
frequency when given a small amount of electrical energy.

191

The control «circuit suppling the eletrical energv is
composed of two sections of an IC, twoe resistors, and a

capacitor. []‘_

In sheet 1 of 4, D=7

”HH

How can a circuit use only a few sections of an IC?
It's simple. We can do this by only connecting two sections
2f the IC to the clock circuit.

)
— >

Yy

—>—
—>

The 74LS14 contains six elements sections called
Schmitt Triggers (don't worry about detailed operation of a
Schmitt Trigger). However, il vou are interested in
learning about Schmitt trigger, read the next section
Schmitt trigger.

Schmitt Trigger

VCC 6A ©6Y 5A 5Y 4A 4Y
14131—12-411}-418 9

TFRF BB 1]
ia 1Y 2A 2Y 3A 3Y GND

Fig. 74LS14 Hex Schmitt Triggers

192

In digital circuits, the state of a signal can switch
from @ to 1 or from 1 to @. In conventional TTL circuits a
zero centers at 8.4V, Typically a value up to the 6.8V and
somewhat less than zero volts is accepted as a zero level.
A one centers at 2.4V. Typically a value down to 2,8V and
all the wup to about 5.25 volts is accepted as a one level.
Here is an ideal TTL circuit.

Notice the immediate transition from 0.4V to 2.4V. The
transition can never be instantaneous but usually a quick
transition is desirable. Here is a very slow transition.

2y __ e —— g

A slow transition can cause a problem. Devices
attached to a slowly changing signal will become confused
because too much time is spent in between the @ and 1 level.
The device 1is prone to say it's a one, no it's a zero, no
it's a one. How can a quick rise time be achieved. A
circuit called-a Schmitt Trigger will wait until a changing
voltage has passed a particular point and then snap to the
new state.

SCMMITT
TRIGGER

INPUT DUTPUT

193

DIVIDING THE OUTPUT OF THE CRYSTAL
OSCILLATOR

The crystal outputs a frequency of 3.58 MHz. But the
Z88 CPU operates at 1.79 MHz. As you can see, the clock
frequency was divided by two. Between the crystal circuit
and the Z88 CPU is an IC, namely, 74LS74. The name of the
function of a 74LS74 is Dual D Positive-Edge-Triggered
Flip-Flops with Preset and Clear.

This information may not help your understanding of the
circuit. Another way of looking at the function of the
74L874 is shown below:

74L874
3.58MHZ 1.79 MHZ
in ——¢cK Q ———— out

Here is a trace diagram of a 74LS74

Rising
CK—I__“?
Q

Rising

-

\

o ©l

|

bt

Notice that the signal Q only changes on the rising
edge of the CK (clock). Therefore, the clock is divided by
two.

194

Restart (RESET)

Your Z8¢ CPU may be out of contrel e.g. looping. A
circuit controlling the RESET line into the Z828 CPU allows
the operator to regain control. The object is to push a
button and which will hold the RST (pin 26) line low for a
few cycles. Then the line should go high.

RS ? uzb
12 2 —
T _l_ D 0 |9 26 RST
__L__ c9
7
p— g; 4LS74
- uzé

O
(=2}

Sheet 1 of 4,

If RS is not pressed, pin 12 of 74L874 U2b(D) is
connected to 5V through a resistor. The 5 volts at pin 12
will pass through 74LS74 (U2b) so that pin 9(Q) will be
high. Pin 9(Q) connects to the RST line and no action is
initiated by the RST pin. Now press down on RS. Pin 12
will be grounded and a low will pass through U2b to pin 9.
The low at pin 9 will present a low at pin 26 (the reset).
This will cause the 288 CPU to stop executing at its current
address and immediately transfer control to lagcation zero.
You may wonder what the capacitor C9 does. It will hold the
signal low for a few cycles when RS is pressed. Remember
the RST line must be low for a few cycles.

There are two more ways of gaining control of the 288
CPU. Tc be in control 1is to start at a predetermined
address. Pressing the INTR key will transfer control to the
monitor when the maskable interrupt system is enabled.

s

Pressing down on the INTR key will short the interrupt 1line
(INT) to ground. The 1INT interrupt is said to be active
low. Signals which are active low have a bar above their
names, When the INTR key is released the short to ground is
removed and 5 volts is applied through resister R3. The
resister which allows the voltage to be pulled up without
damage tn the power supply is called a pull up resister.
Pulling TINT low by shorting it teo ground doesn't guarar.tee
that the CPU will be interrupted. An INT will be ingored
when the instruction DI (disable interrupt) has been
executed. When the 286 CPU is powered up, the maskable
interrupt system is disabled.

195

The monitor code never enables the INT pin with an EI
{enable interrupt) instruction. 1In the workbook, the uses
of the maskable.interrupt will not be discussed.

The second way to gain control of the Z88 CPU is to

ress the MONI (monitor) key.
P MONT) key 280

m1 CPU

74L598

Sheet 1 of 4, B-7

Moni FT

When the MONI key is pressed, a series of <coordinated
actions must occur., The object of pressing the MONI key is
to cause a non-maskable interrupt (NMI). It 1is sufficient
to know that a low at the pin marked with NMI will transfer
control to memory location 66H. The coordinated actions are
controlled by the 74LS9# which is a counter. The counter
will change the level (e.g. high to low) of the signal at
pin 17 (NMI} of the Z8¢ CPU.

Optional: A Detailed Analysis of the Operation of the 741590

user presses down on the monitor key, a low must appear at
the 2808 CPU's NMI with a minimum of delay. Secondly, when a
break point is sensed during program execution, the break
signal BREAK must be delayed until 4 instructions have been
executed. The monitor key must take precedence over a break
signal.

The MONI Key

Before MONI is pressed, a 5 volt level 1is applied teo
pin @ of the 74LS14(d) coordinates B-7 on sheet 1. The 5
volts is supplied through the 18K ohm resistor. This
resistor pulls the voltage level up when the MONI input is
not grounded. The resistor is called a pull up resistor.
When MONI is pressed, one end of the 10K ohm resistor is
grounded and the level at 74LS14(d) goes to dground. The
74LS14 will. invert the ground level from a low to a high.
The level at pin 6 (R9(1)) and 7 (R9(2)) is high. Consult
the 74LS9@ truth table below

196

RESET/CQUNT FUNCTION TABLE

LINE RESET INPUTS CUTPUT
RA(1) Re(2) RI(1) RI(2) Op Qc Op On

1 H H L X |.L. L L L
2 H H X L L L L L
3 X X H H H L L H
4 X L X L COUNT

5 L X L X CQUNT

[¢] L X X L COUNT

7 X L L X COUNT
74L5908 —-—- Reset/Count Truth Table

Line 3 R9(1l) and R9(2) high indicates that Qa will be high.
Qa high will be inverted by the 74LS74(C) to a low. The low

is presented to pin 17 NMI of the Z88 CPU. Pressing MONI
interrupts the 2780 CPll. Line 3 also shows that the
condition of R®(1) and R®8(2) are irrelevant when R9(1l) and
R9(2) are high. _This means that the MONI key takes

precident over the BREAK.

Break

Understanding the actions of a breakpoint requires
tracing both software and hardware. A breakpoint is set by
replacing the opcode of the instruction at the selected
breakpoint with a RST 28H instruction. When this instruction
is executed, control will be transferred to location 28H.
The routine to service an NMI (non-maskable 1interrupt) is
located at 28H. The software sequence is 1) the routine
KSBR (statement 587) responds to the wuser request for a
breakpoint by setting the breakpoint address in location
BRAD, 2) When the GO key is pressed, the service routine
GDA (statement 1924) puts the hex code EF (RST 28H) at the
breakpoint address. Wwhen a break is recognized a transfer
is made to the break trap routine at location 28H. The
second part of the break routine starts at location 3E
(statement 221). Statements 236 to 241 will now be analyzed
in detail.

197

Statement 236 LD A,l100080@0H

The A register is loaded with the break enable pattern
the leftmost bit is set.
Statement 237 OUT (DIGIT),A

The pattern in A is output to PC@ to PC7. PC7 sheet 2
of 4 coordinates B-4 connects to the 74LS9@-—-sheet
coordinates B-7.

—

Statement 238 to 241

These four , instructions will be executed before a
non-maskable interrupt will occur. As long as both of the
BREAK'inputs Ro{1l) and Ro(2) are high, the break will either
set 0a through Qd low (see 74LS9@ truth table lines 1 and 2)
or have no effect if R9(1}) and RS(2) are both high (line
3. Assume R9(1) and R9(2) are low and a BREAK signal is
sent. The 74LS98 will begin to count. The count sequence
is dependent upon how Ain and Bin are wired. The 74LS%8 has
OD connected to Ain. The count sequence is BI-QUINARY.

COUNT QUTPUT
Qa Qp Qc Op_ |
0 L L L L
1 L L L H
2 L L H L
3 L L H H
4 L H L L
5 H L L L
6 H L L L
7 H L H L
8 H L H H
9 H H L L J
Count sequence for the 74L590

The first four counts after the base value at COUNT ¢
hold QA low. The fifth count COUNT 5 changes QA to a thigh
and thus causes a non-maskable interrupt. A count occurs
cach time the line at Bin (pin 1) goes low. Bin is
controlled by a signal (M1) from the Z88 CPU which goes low
every time a new instruction starts (or an extended opcode
is read). Remember after the sboftware issued the interrupt
signal to the 74LS590 for more instructions were executed.
Why was the 74LS9@ choosen because both the MONI key and a
BREAK could be serviced with MONI overriding BREAK. The
counting feature of the 74LS9@ may not be necessary.

198

Memory Selection

The memory ranges of the ROM and RAM for the basic
MPF-1 are shown below:

_Address range Address range in hinary

Ch i .
Tn her ip functional/typ:

U6 p@@p-~PFFF @000,0000,0000,0000-—0000,1111,1111,1111 Monitor/PROM

U8 1886--1FFF @@el,lees,pene,e00e--2061,1111,1111,1111 Programs/RAM
U7 280@0--2FFF @@1p,0000,0090,0006--0019,1111,1111,1111 Programs/PROM
Each binary bit is wired up to an address line. The
address 19BF (hexadecimal)(= 0601 1661 1811 1111 binary)
would be in the user RAM (U8). The corresponding address

lines would be

Al5 Al4 Al3 Al2 All Al0 A9 A8 A7 A6 AS5 A4 A3 A2 Al AQ

The upper four address 1lines AlS5 - Al2 control the
selection of which memory chip is active.

To select any of the memory chips Al5 and Al4 must be
low. On the schematic sheet 1 of 4, (A, 5-4), there is a
chip labeled 74LS139. Find U5a on sheet 1 of 4 (A, 5-4).

The 74LS139 is a "two to one of four" decoder. What
this means 1is that if you enter one of four binary values
9%, 61, 16, 11 into the chip, only one of the output lines
is selected (goes low).

The 74LS139 has two sections. Each section has two
input lines A and B, and a line which turns on (selects,
enables) the ‘section, and the four outputs.

199

5
?’ will be low jf
16 input was

vCC
2 4 INPUTS
1A 1 YO0b—— a0 ENABLE [SELECT QUTPUTS
¥Ylp—— @1 G B A Y0 Y1 Y2 Y3
3 Y2b—— 16 H X X B H B H
318 & ¥3p— 11 L L L L H B H
_ @ L L H H L H H
116 & L H L H H L H
E— L H H H H H L
USa
)
= 74LS139 Truth table

Usa is wused to turn on (select) U6 or U7 or U8B only
when 1A and 1B are low. 1A and 1B are connected to Al4 and
Al5, respectively. So whenever Al4 and Al5 are both low, 1Y@
goes active 1low and one of the memory chips is activated.
The pin labeled 1G which enables 74LS13%(a) is active only
when an instruction requesting memory 1is used. The
instruction LD A,(HL) is a memory request instruction and
will activate the memory request line MREQ pin 19 of the Z8¢0
CPU (coordinates B-5). An instruction which will perform
input-output operations such as IN A, (25H) will not activate
MREQ. Which memory chip is activated? To select U6 whose
addresses range from @066 through @FFF, both Al2 and Al3
must be low.

14 Both Al2 & Al3 are low

Al2 . 2 o—
2A 7415139250

13
Al3 ———2B USb

Line 2Y@ in USb goes low when both Al2 and Al3 are low.
Therefore, 2Y0 of U5b is wired to the chip selection line of
U6. A chip selection line activates a chip.

. To select U7 address line Al2 must be low and address
line Al3 must be high. What line of USb should be selected?
The answer is 2Y2.

200

Finally, to select U8, the following must occur: Al3,
low; Al2, high; and All, high. Do you see why All must be
high? Because the memory chip on U8 has a range of
addresses starting from 18@@8 (0001,10006,0000,0008) to 1FFF
(6061,1111,1111,1111), any number which is smaller than lFFF
and bigger than 1860 is gqualified to be used to point to a
specific memory location. If you want to pick a binary
number which is smaller than 1FFF and bigger than 1888, the
conditions for such a number is that the 16th (Al5), 15th
(Al4), and 14th (Al3) bits should be § and 13th (Al2) and
12th (All) bits should be 1. That means Al2 and All must be
high.

Because All must be high, an additional decoder USa is
required. Trace the connections and see if you agree with
the line selected to control the chip select (CS) of US8.

Cross Reference of Sheet-to-Sheet Schematics

An inspection of the right or left margin of sheet 1
reveals some lines that do not connect to any components on
‘sheet 1. However, the lines do have a label.

We will now formally discuss how to locate a specific
location on the schematics and use cross reference between
different sheets. Perhaps you have noticed that the four
sides of a circuit map ({schematic) are marked with A, B, C,
and D, and 1, 2, 3, 4, 5, 6, 7, and 8. If we refer to the
lowest and rightmost location of the circuit map, the words
"{A-8)" is wused to point to the location. Now find the
location (D-1) on sheet 1, What you see is

D@--D7

The SH2,3 means that you shuld refer to the <schematics on
sheet 2 and 3.

201

The lines involved on (D-1) of sheet 1 are data
lines-~D@ through D7 (eight 1lines). Where do these lines
go? SH2,3 indicates that sheets 2 .and 3 are to be
inspected. Turn to sheet 2 and use the coordinates (D-8)
and (C-8), you will find:

SH 1, 3

The label SH1,3 indicates that lines DP through D7 are
connected to sheet 1 and sheet 3, At (B-1) is another set
of lines connecting to sheet 2 and 3. Actually, only Ag,
Al, A6, and A7 connect to sheet 2 and A@ and Al connect to
sheet 3. On the location (C-8) of sheet 1 is the RST line.
It can also be found on (C-8) of sheet 2, and (A-8) of sheet
3.

Extending the Capabilities of MPF-I

All of the pins of the 288 CPU are available as
external signals. This feature allows all of the
controlling signals available for wuse by add-on-boards.
Turn to sheet 4 of 4, the pin assignment of the fourty pin
connector Pl are shown.

202

Sheet 2--The Control Function of the 8255

The 8255

The dominant IC on sheet 2 of 4 is the 8255 (Ul6),
which is installed on the 1location A-D, 5. This chip is
designed to control input/output on three ports. When the
MPF-1 is turned on or reset, a monitor program determines
how the ports of 8255 will function. Port A will be used
for input and Ports B and C will always output, The 8255

competes with other chips for selection by the CPU. The
decoder at (A-7) and (A-8) selects one of the three chips
8255, PIO, or CTC. The selected chip 1is said to be

activated by the CPU. Each of these chips is sald to be on
a port. The details of I/0O selection and control are not
covered in this handbook. An extensive discussion of the
actions of the displays Ul6 to U2) and the key matrix were

covered earlier. However, the function of Ul2 and Ul5 (the
75491 chip) was not discussed. The 75481 is a segment and
hex digit driver. The 8255 doesn't have enough power to

drive displays. So an IC is required between the ports of
the 8255 and the displays. Ul3 (the 75492 chip) is a driver
which selects (activates) an entire display.

Speaker

The speaker circuit at (B,C-1,2) of sheet 2 consists of
a transistor Q2, resistor R9, and a speaker. The transistor
is necessary to furnish more power than a typical integrated
circuit can. "Port PC7 of the 8255 controls the frequency
and period of the sound.

Cassette-Microphone

A resistance and capacitance at (B-1,2) shape 'the
cassette recording signal output at port PC7.

Cassette-Earphone

Diodes, a capacitor, a resistor, and two sections cf
the 74LS14 receive and shape the signal received from the
cassette. This signal 1is then read into the B255 at pnrt
PAT.

203

User Key

The user key is a key that has no monitor functions and
therefore is available for user definition, Sheet
3——Counter Timer Circuit (CTC) and Parallel 1/2 (PIO)

Sheet 3--Counter Timer Circuit (CTC) and Parallel 1/0 (PI0)

The actions and programming of the CTC were covered in
an earlier programming excercise. Parallel I/0 using the
Z86 PIO will not be covered in this course.

Sheet 4

P2--Pin Functions

You can locate the position of P2, which is a 4@-pin
bus connector for the Z8¢ PIC and CTC.

The two ports of the Z8@ PIO and the clock inputs and
outputs of the 2808 CTC have been wired to the 46-pin bus
connector P2, The pin functions of P2 are listed on sheet
4.

Memory Options

The user can install several different memory chips.
This capability is made possible by allowing changes to the
wiring. The user must cut some traces (wires) and jumper
some points when using either a 2732 or 6116. A chart at
{B-1,2,3) of sheet 4 shows the circuit changes.

204

APPENDIX

Appendix A Reference
Z80 ONLY

1. Microprocessor Applications Reference Book
Volume 1 @#9-2145-91, Zilecg Inc.

2. Programming the Z80--Rodnay Zaks
SYBEX

3. Z8#% Assembly Language Programming
Lance Leventhal, Osborne-~-McGraw Hill

4. Z8f-Assembly Language Programming Manual
“2ilog 03-8002-01, Rev B. April 1989

5. Z80-CPU Z86GA-CPU Technical Manual
#3-0829-61, 2ilog Inc.

6. 28080 Microcomputer Handbook, William Barden
SAMS

7..280 Microprocessor Programming and Interfacing
Book 2, Nichols, Rony; Blackburg

8. 280 Software Gourmet Guide and Cookbook
Nat Wadsworth, SCFLBI

9. 7Zilog 1981 Data kook
COMPUTER CONCEPTS

1. Introduction to “icrocomputers Volume @
(Basic Concepts]) Adam Osborne
Osborne-McGraw i1ill

2. Introduction to Microcomputers Volume I
(Basic Concepts) 2nd Edition
Adam Osborne, Osborne—-McGraw Hill

3. Introduction to Microcomputers Volume TI
(Some Real Microprocessors)
Adam Osborne, Osborne-McGraw Hill

4, Introduction to Microcomputers Volume III
(Some Real Support Devices)
Adam Osborne, Osborne-McGraw Hill

5. Introduction to Microprocessors, Software,
Hardware, Programming--Lance Leventhal

Prentice Hall

4. Wicroprocessaors and Programmed Logic
itenneth L. Short, Prentice tlall

205

PROGRAMMING TECHNIQUES
{Not in Assembly Language)

1. PASCAL with Style, Henry F. Ledgard
Hayden Book Company Inc., Rochelle Park,
New Jersey

2. Programming Poverbs, Henry Ledgard,
Hayden Book Company Inc., Rochelle Park,
New Jersey

MICROPROCESSOR DESIGN

1. Digital Hardware Design, John B. Peatman,
McGraw Hill

2. Introduction to Microprocessor System Design,
Harry Garland, McGraw Hill

3. Microcomputer-Based Design, John B. Peatman,
McGraw Hill

4, Microprocessor System Design,
Edwin E. Klingman, Prentice Hall

INTERFACING

1. CMOS Cookbook, Don- Lancaster, SAMS
2. Microcomputer Interfacing, Bruce Artwick,prentice-t'all

3. TV Typewiter Cookbook,
Don Lancaster, SAMS

4. Z8P Microprocessor Programming and

Interfacing Book 2, Nichols and Rony,
Blacksburg

DATA COMMUNICATIONS

1. Data Communication and Teleprocessing Systems,
Trevor Housley, Prentice Hall

2. Distributed Processing and Data Communications,
Daniel R. McGlynn, Wiley Interscience

206

3. Technical Aspects of Data Communications,
DEC Educational Series JBOH2A
Digital Eguipment Corp.

GENERAL REFERENCE

Computer Dictionary, Charles J. Sippl, SAMS

207

Appendix B

Alphabetical Listing of Monitor and Interrupt Key

The ygray and orange topped keys are either sensed
by a wmonitor. keyboard scan routine or by a Cpl

interrupt.

sensed by a user programn.

Name

ANDR

CHI

DATA

DEL

[eXR!

INS

IR

tunction
sets a menory address,

Clear the breakpoint in a
user's prograd.

Inputs data either to
mermory or a reyister.

NDeletes one byte from
memory.

Start execution at the
current proygram counter
address.

Inserts one byte into
Henary.

Interrupts the executing
projra=n, This interrupt
nust be enahled by the
user.

~-(MINUS)Decrenents a value—--use

FONT

POVE

1°C

+(PLUS3)

RiCG

LA

depends upon previous key
function.

Interrupt the user's program.

=oves a data block Lrom one

area to another arca.
Display current proyram

counter~~the 3TFP function

will now Le active.

Increnents a value--use
depends upon previous key
function.

Allows the user to select
Zh registers,

One exception is the user key--it is

Heference
Pajje 11

Pajge 23

Page 11

rayge 27

Paje 18

Paye 23

Appendix i shews
1 of ¢

tec ey
functions

Paye 24
Paje 25

Paje 17

sge ey
functions

Page 14

Conputes the relative address Page 29

in a junp relative
instruction.

208

TAPLE

TAPE

ushtn
nEY

RD

WIR

Performs a hardware reset.
S5ets a breakpoint.

Executes a single step
whenever pressed.

Allows user to set up tape
read parameters.

Allows user to set up tape
write parameters.

Available as a user progranmed Appendix B

key.

209

Page 11
Page 20

Page 19

Page 32

Page 3#

Sheet 2 of

4

Appendix C
REGISTERS

The principal difference between a register and a memory
leccation is the speed of accessing the data. The
iegisters are on the CPU chip and can be accessed
rapidly.

Memory access involves addressing memory and then
fetching the data. The power o¢f many CPUs is determined
by the number and organization of the registers. The

Z80 CPU has more registers than the 8886 or 8@85--

two very popular chips. The Z88 CPU has many more
registers than Motorola's 6888, but the register
organization of the 6846 is different. To determine what
registers are absolutely necessary in a computer which is
register based. Read the explanation of registers below.

The A register

There must be an A register to hold the results of arith-
metic (add & subtract)} and logical (AND, OR etc.)
operations. The register which participates in most
arithmetic and logical operations is the A register

——the accumulator. The register is a byte wide (B8 bits)
register. To add larger numbers than a byte's width,

the A register is used repeatedly.

The HL register pair

Some method is needed to load numbers into the CPU
registers so that sums, differences, etc. can be
computed. The HL register pair is used frequently to
point to a memory location. The instruction

LD A, (HL)

will load the A register with the one byte of data from
the memory location pointed to by the HL register

pair. Registers H and L may also be used separately
(unpaired).

The BC and DE register pairs

Register pair BC and DE may also be used to point to
memory. The register pairs can only be used to load

the A register. The HL register pair will load a byte

from memory into the A,B,C,D,E,H and L register. BC and

DE are used in other instructions. For example, to perform
a 16-bit addition, The instruction

210

ADD HL,BC

adds BC to HL. B,C,D and E may be used as 8 bit
register (unpaired).

Consider the following arrangement of memory

OPEN

STACK

SUBROUTINE
X XX

DATA

PROGRAM A

Memory space management dirgram
The PC register

The processing begins by executing Program A. The
location from which instructions are to be fetched
(executed) is pointed to by a program counter, PC.

The IX and 1Y register

The data area can be accessed by any of the three pairs
-~-HL, BC, and DE. H (high part of the address) and

L (low part of the address) needed to be snapped to-
gether to form a l6-bit address. The Z80 possesses

two more data pointers, the 16 bit registers IX and IY.
pointers, the 1l6-bit registers IX and IY.

B and C, D and E, are also snapped together.

In many instructiens, IX and 1Y, are used to point

to a base address., The actual location accessed uses
the base address plus an offset displacement., For
example, the instruction

LD A, (IX+4)

211

loads the contents of the location from bytes beyond
the value in the IX register.

3085
IX+4 38094
3903
3p82
3081
IX . 300

In the diagram above where IX contains 3868, IX+4

would point to 38@4. Because of the indexing feature
(base address) of the IX and IY registers, the "I" stands
for index. IX and IY are index registers. The Space
Management Diagram can now indicates the usage of some
registers.

OPEN
STACK <«——GP
SUBROUTINE
x X X
DATA e HL, BC,DE, IX, IV
PROGRAM A < PC

The SP register

The stack is used to hold a temporary result or other
non permanent information. When a transfer is made

to subroutine XXX by Program A, the return address

is stored on the stack. When the subroutine completes,
the address on the stack is used to return control to
preyram A, The stack is controlled by a stack polinter,
SP. The stack pointer moves down or up depending upon
whether data is added or removed. Turn to Appendix

C in the MPF-I User's Manual. The second page of this
appendix zontains the Z8@ CPU Register Configuration.
Only the I and R B8~bit registers in the special

purpose r¢ jister area have not been mentioned.

212

The I and R register

The I register is used with an Interrupt system designed
to work with Z88. The R register supports a typeg of
memory that needs a Refresh signal. Neither the I or

R register are discussed in this workbook.

The F register

The Flag register indicates the kind or type of result.
After an ADD, was the result negative, zero, or positive?
Did the ADD produce a carry? The appropriate flags and
their meaning are described in the notebook chapters.

The Alternate register set

The registers hold the current results and the next
numbers to be processed. When you want to interrupt

the current processing for a few seconds and service a
short routine, you must typically preserve one or more
registers. One way to preserve registers is to store
them in memory. This storing process requires accessing
memory—--tell it to get ready and then moving the register
contents from the CPU chip to memory. When the interrupt
routine is run again, the reverse process must take
place.

The Z88 CPU has a faster way to change executing
routines. A computer much larger and more costly than
the ZB8 CPU was used a few years to process simultaneously
(at the same time) two jobs (routines). The computer
was bought to control traffic. In the morning the rush
hour traffic would build up along certain avenues.
Sensors placed on avenues and streets counted

the number of vehicles passsing by. Periodically,

the computer was interrupted to process the vehicle
count. If a large number of vehicle were on a parti-
cular avenue, then the signals were timed to move
traffic faster on that avenue. When traffic processing
was completed, the computer switched to processing the
financial data for the city.

Main register set Alternate register set

i]

In the diagram above, the current processing is for
traffic control. When the processing completes, the
Z8@ CPU can shift to the right set of registers by
executing two instructions

EX AF, AF' and EXX

The alternate register set becomes the main register
set.

Alternate register set Main register set
T

T
! |
! 1
1 I

7

O

The switch from one set of registers to ancther set will
typically take from 2 to 4 millions of a second.

214

MULTITECH INDOUBTRIAL CORCORATION N
OFFICE/ 977 MIN SHEN E ROAD TAIPEI 105.
TAIWAN.RO.C. |
TEL:{02)769-1225(10 LINES)
TLA:23756 MULTIC, 19162 MULTIC.
FACTORY/S, TECHNOLOGY ROAD Il 111
HSINCHU SCIENCE. BASED INDUSTRIAL PARK
HSINCHU TAIWAN. 300, RO.C.
TEL:(035)775102(3 LINES)

Multitech Electronics Inc.

195 West El Camino Real
Sunnyvale, CA. 94086
U.S.A.

Tel: 408-7738400

Tix: 176004 MAC SUVL
Fax: 408-7498032

S — DOC.NO:M1M09-302C —/

