

(1) 6,6 V_{BE}; V₁ = 4,6 V

(2) 0.31 Vp + 1.4 VBE; $\text{V}_2 = 5.6 \text{ V}$

Fig. 1 Block diagram with external circuitry.

TT 111

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Elimiting values in accordance with the Absolute Maximum System (IEC 134)				
Supply voltage (pin 8)	V_{P}	max.	18	V
Control voltages (pins 4 and 12)	V ₄₋₁₆	max.	12	-
	^{-V} 4-16	max.	5	V
	V ₁₂₋₁₆	max.	12	V
	^{-V} 12-16	max.	5	V
Total power dissipation	P _{tot}	max.	900	mW
Storage temperature range	T _{stg}	-55 to +	150	οС
Operating ambient temperature range	T _{amb}	–30 to	+ 80	oC

CHARACTERISTICS

Vp = 15 V; T_{amb} = 25 °C; measured in Fig.1; in position 'linear' (V₄₋₁₆ = V₁₂₋₁₆ = 5,6 V); R_G = 60 Ω ; R_L = 5,6 k Ω ; f = 1 kHz; unless otherwise specified Supply voltage range (pin 8) 13.5 to 16.5 V Supply current (pin 8) ĺР typ. 34 mA 25 to 45 mA

Signal processing

Voltage gain at linear frequency response	G_v	typ.	0 dB
Frequency response (-1 dB)	f	20 Hz to 20) kHz
Maximum gain variation at f = 1 kHz at maximum bass/treble boost or cut	ΔG_{V}	< ± 1,!	5 dB
Bass boost at 40 Hz (ref. 1 kHz) $V_{4-16} = 9.2 \text{ V}$			5 dB 6 dB
Bass cut at 40 Hz (ref. 1 kHz) $V_{4-16} = 2 V$		> 1!	5 dB 6 dB
Treble boost at 16 kHz (ref. 1 kHz) $V_{12-16} = 9.2 V$		> 15	5 dB 5 dB
Treble cut at 16 kHz (ref. 1 kHz) $V_{12-16} = 2 V$		> 15	5 dB 5 dB
Total distortion $V_{O(rms)} = 100 \text{ mV}; f = 1 \text{ kHz}$ $V_{O(rms)} = 100 \text{ mV}; f = 40 \text{ Hz to } 16 \text{ kHz}$	d _{tot} d _{tot}	typ. 0,03	

$V_{O(rms)} = 1 \text{ V; } f = 1 \text{ kHz}$

O(rms) 1 V, 1 I KIIZ	dtot	<	0.2 %
$V_{o(rms)} = 1 \text{ V; } f = 40 \text{ Hz to } 16 \text{ kHz}$	d_{tot}	typ.	0,2 %
Input/output voltage at $d_{tot} = 0.7 \%$ (r.m.s. value)	$V_{i(rms)} = V_{o(rms)}$	> typ.	1,6 V 2 V
Output signal plus noise voltage (r.m.s. value) f = 20 Hz to 20 kHz	V _{no(rms)}	typ.	40 μV

Output noise voltage; weighted conform DIN45405; peak value

 $V_{no(m)}$

dtot

typ.

typ.

90 μV 160 µV

CHARACTERISTICS	(continued)
-----------------	-------------

Channel separation f = 1 kHz f = 250 Hz to 12,5 kHz f = 40 Hz to 16 kHz	α α α	typ. typ. >	72 68 50 58	dB dB
Control voltages		., .	-	
•		_	0	17
Recommended control voltage range		>	2 to 9,2	-
treble/bass	V ₄₋₁₆ = V ₁₂₋₁₆		0,66 Vp	
		typ	5,6	
Control voltage at linear frequency response	V ₄₋₁₆ = V ₁₂₋₁₆		,4 to 5,8	
	(0,31	V _P to	1,4 V _{BE)}	V
Quiescent input current		typ.	6	μΑ
$V_{4-16} = V_{12-16} = 2 \text{ to } 9.2 \text{ V}$	14 = 112	<		μΑ
Input resistance (pins 4 and 12) $V_{4-16} = V_{12-16} = 5,6 V$	R _{i4;12}	typ.	800	kΩ
Amplifier characteristics				
Quiescent input currents; V _i = 4,6 V (pins 1, 2, 6, 7, 9, 10, 14 and 15)	11;12;16;17;19;110;114;115	typ.	0,6 2	μΑ μΑ
Input resistance (pins 1,2,6,7,9,10,14 and 15)	Ri 1:2:6:7:9:10:14:15	>	1	МΩ
Internal emitter resistance at outputs	R ₃₋₁₆ ; R ₅₋₁₆ ; R ₁₁₋₁₆ ; R ₁₃₋₁₆	typ.	2	kΩ
	_*.*		_	
Output resistance (pins 3,5,11 and 13)	R _o 3;5;11;13-16	typ.	10	7.2
Maximum gain; no load	G_{v}	>		dB
Maximum gam, no road	•	typ.	43	dΒ
D.C. output voltages $V_{4\cdot 16} = V_{12\cdot 16} = 5,6 \text{ V (pins 3,5,11 and 13)}$	V ₃₋₁₆ ; V ₅₋₁₆ ; V ₁₁₋₁₆ ; V ₁₃₋₁₆		4,6 1,3 to 4,9 6,6 V _{BE})	٧

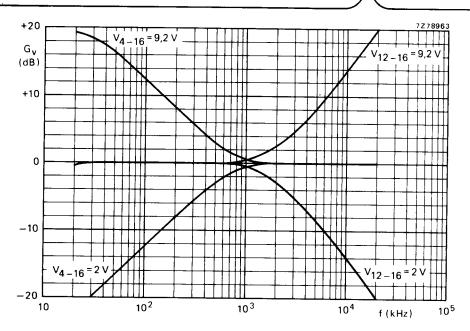
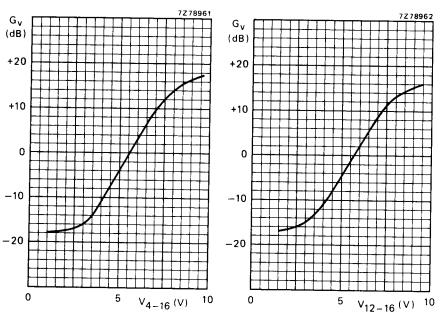


Fig. 2 Frequency response.



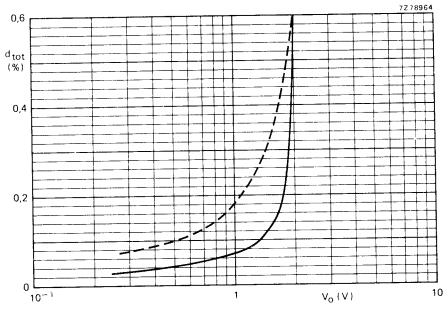
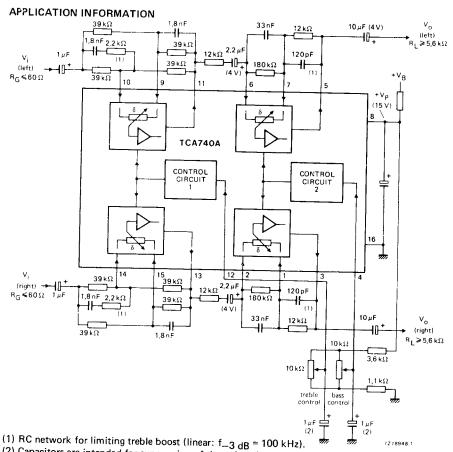

Fig. 3 Bass control curve at f = 40 Hz.

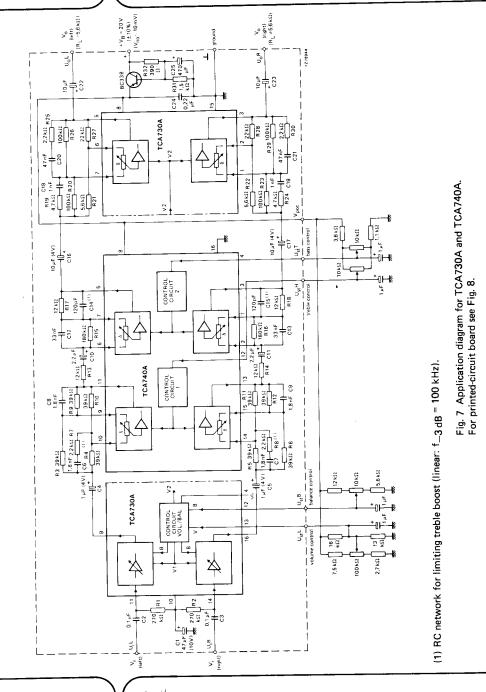
Fig. 4 Treble control curve at f = 16 kHz.

(35

February 1980



February 1980


136

T III

(2) Capacitors are intended for suppression of the noise when adjusting the mechanical potentiometers.

Fig. 6 Application example of TCA740A used for treble and bass control.

*

February 1980

13 4

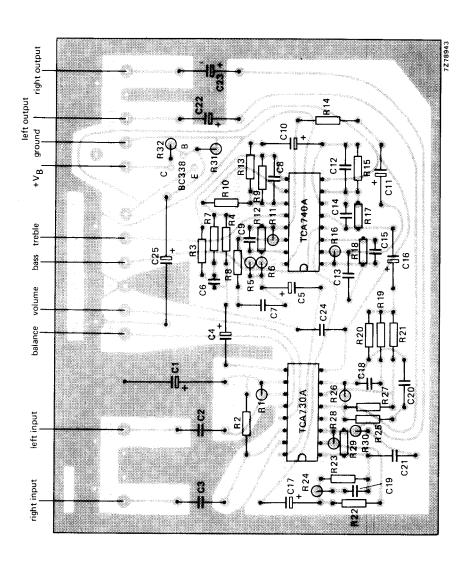


Fig. 8 Printed-circuit board component side, showing component layout; for circuit diagram see Fig. 7.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com