Impact of Phytonutrients on Inflammation

Zhaoping Li, M.D., Ph.D. Associate Professor of Medicine Center for Human Nutrition David Geffen School of Medicine, UCLA

www.time.com AOL Keyword: TIME

TIME Feb. 23, 2004

Role of Inflammation in Human Diseases

Rader, NEJM 2000; 343: 1181.

CRP vs hs-CRP

 CRP is an acute-phase protein produced by the liver in response to cytokine production (IL-6, IL-1, tumor necrosis factor) during tissue injury, inflammation, or infection.

Standard CRP tests determine levels which are increased up to 1,000-fold in response to infection or tissue destruction, but cannot adequately assess the normal range

 High-sensitivity CRP (hs-CRP) assays (i.e. Dade Behring) detect levels of CRP within the normal range, levels proven to predict future cardiovascular events.

hs-CRP and Risk of Future Stroke in Apparently Healthy Men

Quartile of hs-CRP

Ridker et al, N Engl J Med. 1997;336:973–979.

hs-CRP and Risk of Future Cardiovascular Events in Apparently Healthy Women: Low-Risk Subgroups

Quartile of hs-CRP

Ridker et al, Circulation. 1998;98:731-733.

hs-CRP Adds to Predictive Value of TC:HDL Ratio in Determining Risk of First MI

Ridker et al, Circulation. 1998;97:2007-2011.

Risk Factors for Future Cardiovascular Events: WHS

0 1.0 2.0 4.0 6.0 Relative Risk of Future Cardiovascular Events

Ridker et al, N Engl J Med. 2000;342:836-43

Clinical Application of hs-CRP for Carcliovascular Risk Prediction

Ridker PM. Circulation 2003;107:363-9

Similar DNA, different diets!

Diets Then and Now

50,000 Years Ago

- Fruits, nuts, seeds, roots, tubers, flowers, leaves, stalks, beans
 - 1/2 the fat
- 2-3x the protein
- No dairy or refined flour
- No processed foods
- No alcohol, no tobacco

Today

Potato, refined pasta & cereals white rice & flour, corn
Added fat and sugar
High fat proteins
Ice cream, cheese and whole milk
Processed foods

Instead of these colors.....

We eat these colors...

Phytochemicals/Phytonutrients

Non-nutrient plant compounds

 provide health benefits against certain chronic human illnesses such as cancer, heart disease, neurodegenerative diseases etc.

Phytonutrients and CRP

1. Esposito, K. et al. *Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial.* JAMA. 2004; 292;1440-6.

2. Cao. X. et al. *Plasma C-reactive protein and homocysteine concentrations are related to frequent fruit and vegetable intake in Hispanic and non-Hispanic white elders.* J Nutr. 2004;134; 913-8.

3. Block G. et al. *Plasma C-reactive protein concentrations in active and passive smokers: influence of antioxidant supplementation.* J Am Coll Nutr. 2004.

4. King, DE; *Dietary fiber, inflammation and cardiovascular diseases;* Mol. Nutr. Food Res, 2005.

CV benefits of Mediterranean diet on metabolic syndrome

End Point	Mediterra nean diet	Control	P value
Weight (kg)	-4	-1.2	<0.001
CRP (mg/L)	-1.1	-0.1	0.01
IL-6 (pg/mL)	-0.7	-0.1	0.04

55% on Mediterranean diet no longer had MS Esposito K et al. *JAMA 9/22/2004*; 292: 1440-46.

Fruit and Vegetable Intake and Inflammation Markers

Fruit intake (d/w)

Vegetable intake (d/w)

	<1 (<i>n</i> = 286)	1–2 (<i>n</i> = 436)	3–4 (<i>n</i> = 584)	5–6 (<i>n</i> = 609)	7 (<i>n</i> = 1164)	<i>P</i> for trend ²	<1 (<i>n</i> = 95)	1–2 (<i>n</i> = 383)	3–4 (<i>n</i> = 886)	5–6 (<i>n</i> = 947)	7 (<i>n</i> = 810)	P for trend ²
Plasma vitamin C (µmol/L) ³	15.3 (13.7, 16.9)	18.2 (16.8, 19.7)	19.5 (18.0, 20.9)	24.5 (23.3, 26.3)	27.9 (26.6, 29.4)	<0.0001	14.9 (12.3, 18.0)	18.9 (17.5, 20.9)	20.7 (19.7, 22.2)	24.5 (23.3, 26.3)	25.3 (24.1, 27.1)	<0.000
CRP (mg/L) ³	1.84 (1.62, 2.08)	1.72 (1.55, 1.90)	1.68 (1.54, 1.82)	1.55 (1.42, 1.68)	1.51 (1.42, 1.62)	0.002	1.73 (1.39, 2.16)	1.55 (1.39, 1.73)	1.69 (1.58, 1.82)	1.63 (1.52, 1.73)	1.51 (1.40, 1.63)	0.15
t-PA (ng/mL)	11.13 (10.65, 11.61)	11.11 (10.73, 11.5)	10.98 (10.65, 11.31)	10.18 (9.86, 10.50)	10.59 (10.36, 10.82)	0.001	11.37 (10.53, 12.20)	11.00 (10.59, 11.40)	10.87 (10.58, 11.11)	10.46 (10.20, 10.71)	10.69 (10.40, 10.96)	0.03

Wannamethee et al. J Clin Nutr 83:567, 2006

High Intake of Carotenoid-rich Vegetables and Fruit Reduces Plasma CRP

Watzl et al AJCN 2005

Dietary Patterns and Inflammation Markers in MESA

Factor 1: fats andP forprocessed meatsQ1Q2Q3Q4Q5trend2

CRP (mg/L)	1.52 ± 1.04	1.71 ± 1.04	1.81 ± 1.04	1.99 ± 1.04	2.02 ± 1.05	< 0.001
IL-6 (pg/mL)	1.09 ± 1.02	1.15 ± 1.02	1.16 ± 1.02	1.21 ± 1.02	1.26 ± 1.03	< 0.001
Homocysteine (µmol/L)	8.60 ± 1.01	8.69 ± 1.01	8.80 ± 1.01	8.84 ± 1.01	8.95 ± 1.01	0.004
sICAM-1 (ng/mL)	265 ± 1.01	257 ± 1.01	261 ± 1.01	253 ± 1.01	254 ± 1.02	0.21
sE selectin (ng/mL)	49.7 ± 1.05	44.3 ± 1.04	49.0 ± 1.04	48.5 ± 1.04	46.6 ± 1.05	0.80

Nettleton et al. J Clin Nutr 83:1369, 2006

Dietary Patterns and Inflammation Markers in MESA

Factor 4: wholeP forgrains and fruitQ1Q2Q3Q4Q5trend2

CRP (mg/L)	1.96 ± 1.04	1.99 ± 1.04	1.80 ± 1.04	1.74 ± 1.04	1.55 ± 1.04	< 0.001
IL-6 (pg/mL)	1.26 ± 1.02	1.21 ± 1.02	1.16 ± 1.02	1.11 ± 1.02	1.12 ± 1.02	< 0.001
Homocysteine (µmol/L)	8.97 ± 1.01	8.89 ± 1.01	8.73 ± 1.01	8.68 ± 1.01	8.58 ± 1.01	< 0.001
sICAM-1 (ng/mL)	262 ± 1.01	256 ± 1.01	258 ± 1.01	259 ± 1.01	253 ± 1.01	0.044
sE selectin (ng/mL)	49.6 ± 1.04	47.2 ± 1.04	49.5 ± 1.04	46.3 ± 1.04	46.3 ± 1.04	0.26

Nettleton et al. J Clin Nutr 83:1369, 2006

Fruit and Vegetable Intake in Hispanic and Non-Hispanic White Elders

Gao et al. J Nutr 2004

Pooled Risks of Stroke in Meta-analysis According to Study Variables

Variable	Cohorts, n	Participants, n (events, n)	Fruit and vegetable intake			
	142	San Barris Star	<3	3-5	>5	
Sex	125	ALL		albert /	*	
•Men	5	81 530 (1949)	1	0.83	0.71	
•Women	2	99 067 (1600)	1	0.95	0.76	
Duration of follow-up						
●<10 y	3	119 686 (1384)	1	0.85	0.75	
●>10 y	6	137 865 (3533)	1	0.92	0.73	
Dietary assessment method						
Food frequency questionnaire	7	256 167 (4778)	1	0.91	0.74	
Other	2	1384 (139)	1	0.70	0.60	

He FJ et al. Lancet 2006; 367: 320-326.

Strawberry Research at UCLA

Identify phytochemicals in strawberries

Investigate presence of strawberry phytonutrients in human plasma and urine

Determine biological activities for these phytonutrients in plasma and urine

Strawberry Phenolics

Flavanoids

- Anthocyanins: Pelargonidin and Cyanidin
- Flavonols: Quercetin and Kaempferol
- Hydrolyzable tannins
 - Ellagitannins, Gallotannins, Ellagic Acid, Ellagic Acid Glycosides
- Phenolic Acids
 - Hydroxycinnamic acids and esters,

Seeram et al., Food Chem 2005

Human Study

Bioactivities of compounds in plasma and urine:

 \bigcirc

Inflammation: highly sensitive CRP

Oxidative damage: *ex-vivo* LDL oxidation; lymphocyte 8-OHDG, urinary isoprostanes

Phase II enzymes: Serum GST-α, UDPglucuronosyltransferase and βglucuronidase activity

CONCLUSIONS

Fruits and vegetables contain high levels and a wide diversity of phytonutrients

Phytonutrients in fruits and vegetables were shown to decrease CRP and inflammation